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ABSTRACT 

The Anderson model of wave localization in random media is invoked to study the effect of 

solar wind density turbulence on plasma processes associated with the solar type I11 radio burst. 

ISEE-3 satellite data indicate that a possible model for the type XI1 process is the paramemc decay 

of Langmuir waves excited by solar flare electron streams into daughter electromagnetic and ion- 

acoustic waves. The threshold for this instability, however, is much higher than observed Lang- 

muir wave levels because of rapid wave convection of the transverse electromagnetic daughter 

wave in the case where the solar wind is assumed homogeneous. Langmuir and transverse waves 

near critical density satisfy the Ioffe-Riegel criteria for wave localization in the solar wind with 

observed density fluctuations - 1%. Numerical sinidations of wave propagation in random media 

confirm the localization length predictions of Escande and Souillard for stationary density fluctua- 

tions. For mobile density fluctuations localized wave packets spread at the propagation velocity of 

the density fluctuations rather than the group velocity of the waves. 

Computer simulations using a linearized hybrid code show that an electron beam will excite 

localized Langmuir waves in a plasma with density turbulence. An action principle approach is 

used to develop a theory of non-linear wave processes when waves are localized. A theory of 

resonant particles diffusion by localized waves is developed to explain the saturation of the beam- 

plasma instability. It is argued that localization of electromagnetic waves will allow the instability 

threshold to be exceeded for the parametric decay discussed above. 
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1. Introduction 

In the usual picture of weak plasma turbulence theory, the elementary excitations are taken to 

be plane waves that propagate unimpeded to infinity. These elementary excitations are the standard 

plasma waves: Langmuir waves, ion-acoustic waves, electromagnetic waves, etc. (Tprovich, 1977). 

The plasma which supports the waves is assumed uniform, infinite and homogeneous except for the 

possible inclusion of a constant uniform magnetic field. Density gradients or fluctuations are 

treated as weak perturbations which refract waves smoothly or cause scattering of one elementary 

excitation into another. 

The picture that waves are freely propagating for times in the remote past and far future, and 

that interactions all take place in some intermediate time is a fundamental assumption in weak and 

multiple-scattering theories. On the other hand, a Langmuir or electromagnetic wave which ori- 

ginates and propagates near the critical density will be strongly scattered and modified by relatively 

small density fluctuations, and the scattering theory picture may not be valid. 

In his famous 1958 paper, P. W. Anderson investigated another picture for the elementary 

excitations in a randomly disordered system. In studying the absence of spin diffusion in silicon at 

low temperatures, he suggested that spin wave excitations, when the localized site frequencies are 

randomly distributed, are time-stationary wave packets localized in space with approximately 

exponential fall-off in amplitude away from the site of localization. The Hamiltonian he considered 

is equivalent to that of a wave excited in a medium with a random index of refraction, and so is 

equivalent to the problem of a wave in a phsma with a density that fluctuates randomly about some 

average density. 

In this thesis we adopt the point of view that the elementary excitations of a plasma with tur- 

bulent density variations are, in fact, weakly interacting localized (and therefore quantized) waves. 

The significance of this picture is profound. It suggests that a gentle bump-on-tail instability will 

excite localized modes with central wave numbers resonant with the beam. Therefore the amount 

of beam energy extracted should be greatly reduced in comparison with a beam propagating 
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through a uniform plasma. Wave-wave coupling processes will be modified. First, coupling con- 

stants must be reduced by a geometric factor that accounts for the spatial overlap between the cou- 

pled waves. Second, there is no wave convection for the localized waves, so the threshold for 3- 

wave processes is correspondingly modified. 

One significant difference between a turbulent plasma and a crystalline lattice with random 

impurities is that the former does not have a time stationary Hamiltonian. Our point of view is that 

the turbulence is externally or self-consistently dnven and independent of the waves in which we 

are interested. The effect of time dependent turbulence on localization is therefore an essential 

consideration. 

The motivation for this study is to attempt to clear up certain problems in the undcrstanding 

of the type III solar radio burst. We adopt the model for this phenomenon presented by Cclrrrrs 

(1984) and Lin et al. (1986). which is, in brief, the following. High energy electrons, accelerated 

by solar flares, stream through the solar wind plasma and excite Langmuir waves through a gentle 

bump-on-t6il instability. These Langmuir waves then decay parametrically into an wn-;Lcoustlc 

wave and an elecnomagnetic wave (at the local plasma frequency). These electromagnetic waves 

are then observed at the earth by microwave receivers as the narrowband emission that is charac- 

teristic of the type III burst. Although there is strong experimental evidence for this process, some 

theoretical issues remain unresolved. 

One remaining issue is the ability of the beam to propagate out to 1 XU without disruption 

while maintaining a well-defined positive slope. Another is that the electromagnetic decay is a 

convective instability with growth lengths larger than are consistent with the problem. X third is 

the splkey nature of the wave envelope of the Langmuir waves. It has been apparent for some time 

that the resolution of these difficulties must lie in density inhomogeneities in the solar wind plasma. 

While evidence for the existence of the density turbulence is strong, the details of the turbulence 

are still unclear. Efforts to understand the effect of the turbulence within the framework of wad- 

tional weak turbulence theory have generally required very special assumptions about the nature of 

the density fluctuations and often more problems are raised than solved. Localization, on the other 



3 

hand, is a universal characteristic of random meha (for sufficiently strong turbulencc), as will be 

discussed, and any theory must consider the effects of this as well. 

The effect of density fluctuations on 3-wave processes has recently been discovcred to have a 

pronounced effect in another context. Rose el al. ( 1987) have shown in plasma simulations that the 

ion-density fluctuations produced by Stimulated Brillouin Scattering, when sulficiently strong, will 

spatially localize the Langmuir waves produced by Stimulated Raman Scattering (SRS). Since the 

allowed Langmuir waves are now quantized, the SRS instability may or may not be suppressed, 

depending upon whether any of the quantized Langmuir waves satisfy the 3-wave frequency and 

wave-number matching criterion. In this case, however, the urlpping of the Langniuu waves IS 

within a single density depression and can be interpreted semi-classically, which will not be the 

case for the problem considered in this thesis. 

This thesis is organized as follows. In order to motivate this thesis and set the problem in 

context we begin in section 2 with a review of the type 111 solar radio burst problem, presenting 

essential satellite data and current models that attempt to explain these data. 

In section 3 we discuss the action principle in plasma theory which will provide the theoreti- 

cal framework for the remainder of the thesis. In section 4 wave propagation in random media is 

discussed. Multiple scattering theory is reviewed to explain why it is inadequate for this problem. 

The Anderson model of wave localization is then discussed. The results of 1-D numerical simula- 

tions of the time evolution of gaussian wave packets in random media are presented in section 5 .  

These simulations verify the localization length predictions of Escande and Sorrillard (1981). The 

effect of mobile density fluctuations is also studied in secion 5. 

The bump-on-tail instability in random media is investigated in section 6. A theory lor this 

instability is developed which takes into account that the excited waves are localized by the Ander- 

son mechanism. Results of a 1-D hybrid simulation are presented verifying this model. A theory 

for the saturation of the bump-on-tail instability by resonant diffusion of beam particles by local- 

ized waves is developed and compared with numerical simulation and experiment. 
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Section 7 begins with a discussion of 3-wave decay processes based on an action principle. 

Convective effects in homogeneous media and in media with a uniform density gradient are dis- 

cussed to conclude that the 3-wave process under consideration has too high 3 threshold. Previous 

work in 3-wave processes in inhomogeneous media is reviewed. Implications of Anderson locali- 

zation for the 3-wave process are then developed. 

, 



2. Type 111 Solar Radio Burst - Observations and Current Theory 

We begin with a discussion of the type 111 solar ra&o burst phenomenon and a presentation 

of current satellite data. The arguments in favor of a 3-wave decay model for the phenomenon are 

reviewed, and experimental measurements of density fluctuations in the solar wind are discussed. 

The type In solar radio burst is one of the oldest problems in radio astronomy; however, it is 

not yet understood in theoretical detail. Originally discovered by Wild und McCreody (1950), the 

phenomenon is observed by an RF spectrograph at the earth as a narrowband RF emission, starting 

at -250 MHz and decreasing over a time period of -5-15 sec down to -5 MHz. Observations at 

lower frequencies using ground-based systems are not possible because of ionospheric reflection. 

Satellite observations have extended the lower range down to -10 kHz. Very often emission at or 

near the 2nd harmonic is observed siniultaneously with the above. Wild (1950) proposed that the 

burst was caused by a disturbance which started low in the solar corona arid propdgated outward, 

exciting plasma oscillations of progressively decreasing frequency. Later it was established that the 

disturbance propagates at a velocity -c/3 from which it was inferred that the disturbance was 

caused by electron streams (Wild, 1954). More recent satellite observations, discussed below, have 

confirnied that the source of the burst is associated with electrons propagating along open magnetic 

field lines away from the sun. An interesting peculiarity is that there are some bursts whose fre- 

quency decreases and then increases again. These are interpreted as bursts due to electrons travel- 

ing on closed field lines associated with coronal loops and returning to regions of higher plasnia 

density near the sun. 

IMP-6 satellite observations at I AU (Fainberg und Stone, 1974) showed that the type 111 

radio emission extends down to -30 kHz ;ind the burst duration extends to many minutes or hours. 

Fainberg and Stone were also able to show that the emission region follows the Archimedean spirul 

of the open magnetic field lines predicted by Parker (1958). More recent satellite observations in 

connection with observations from ground-based solar observations have established that electrons 

with energies from a few keV to - 1 0 0  keV, accelerated in solar flares, are responsible for type I11 
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emission. 

The most detailed data on the type III solar burst come from the ISEE-3 satcllite in orbit at 

the Lagnnge point -258 RE upstream (towards the sun) from the earth. The satcllite carries the 

University of California solar electron experiment, which provides electron energy nicasurements 

from 2 keV to 1 MeV, and the joint TRW-JPL-Iowa plasma wave instrument which provides elcc- 

tric field measurements in frequency channels from 17.8 Hz to 100 W z .  Lin et 01. (1981) were 

able for the first time to measure the electron dmribution function parallel to the IMF (intcrplane- 

tary magnetic field) and show that it develops a well defined bump-on-tail distribution. This study 

was continued and results more fully interpreted by Lin et al. (1986). These results form the basis 

for the rest of this thesis and are discussed in detail here. For detailed history of type 111 observa- 

tions with pertinent references see the review by Goldsrein (1983). We shall next discuss the data 

from the Lin et al. (1986) study for a typical solar type 111 radio burst. 

Type XI1 Event - 11 March 1979 

Table 2.1 shows typical plasma pwameters for the event. Figure 3.1 shows the high-energy 

non-thermal electron flux associated with the event along with electric field measurements for the 

11 March 1979 event. The emission in the 100 kHz channel starting at -10:40 UT is characteristic 

of the type 111 emission. It is interpreted as radio emission upstream of the spacecraft which pro- 

pagates to the spacecraft. Onset of emission at lower frequencies occurs later. Activity in the 17.8 

M z  cliannel, corresponding to the local plasma frequency, occurs with the arrival of electrons in 

the 8.5 keV channel and corresponds to times when a positive slope bump-on-tail is observed in the 

reduced parallel electron distribution function shown in Figure 2.2. 

Figure 2.3 shows a portion of the same event in  high time resolution. The important points 

to observe are the intense spikiness of the Langmuir waves in the 17.8 M z  channel, and the coin- 

cidcnce of activity in the 100 Hz channel with thc most intcnsc spikes of the Langniuir waves. 

Early on there was some ambiguity about whether the rndiation observed by satellite is fundnment:il 

or 2nd harmonic emission, but it seems certain from these data that the emission is fundamentnl 
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emission. 

The following assumptions are made in interpreting the above results. The dominant wave 

number for the Langmuir waves is given approximately by the beam resonant wave number 

k o = ~ , , / v b  where vb  is the beam velocity. The ion-acoustic waves observed in the 100 Hz channel 

are actually much lower in frequency and are Doppler shifted by convection past the satellite by the 

solar wind, i.e., a’= o + k  VswcosO ( e  is the angle between the solar wind direction and the inter- 

planetary magnetic field). Assuming w Q: o’, one calculates the wave number for the ion-acoustic 

waves as 

The actual frequency is then inferred from o, = k,  c,. 

Based on the above data Cairns (1983) was the first to propose that the important emission 

mechanism for the type 111 emission is the paramemc decay process L (Langmuir) + T (transverse 

electromagnetic) + S (ion-acoustic). The argument was based on considering the volume emissivity 

(brightness temperature) of various 3-wave processes. The weak turbulence process L + T + S 

(random phase approximation) produces emissivities that are far too small. Further evidence for 

this process was observed in the experiment of Wlielan orid Stenzef (1985). In this experiment 

Langmuir waves were excited with 3 weak beam. Electromagnetic radiation at the plasma fre- 

quency was observed to occur with growth that closely followed the growth of ion-acoustic waves. 

The ion-acoustic waves were observed to have a wave number k, 3 kL,  the wave number of the 

Langmuir waves. This process was also observed in a 2-D numencal simulation (Pritclrrrt ond 

Duwsori, 1976); however, they interpreted it as a two-step process: 

L + L ’ + S  

followed by 

L + S + T .  

In spxe ,  however, the threshold for the process L + L ‘ + S  is not satisfied by seven1 nrclers of 

magnitude (Lin er al., 1986). 
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A fundamental difficulty with this interpretation is that in  homogeneous nit.di;i t t i ?  proccsh' I S  

in fact a convective instability, since the threshold for absolute instability is not cscccdcd :is ;1 

result of rapid convection of transverse wave energy and the high damping rate ot' thc ion-;icouhtic 

waves. This is an involved argument and will be taken up a p i n  in section 7.1. In tact. the solar 

wind is not uniform and we will argue that the solar wind density turbulence is fundmiental for 

understanding the type III process. 

We note briefly that the frequency and wave niatching coupling conditions will give ;1 

daughter ion-acoustic wave with wave number k ,  I k L .  The transverse wave w i l l  be polartied w i t h  

the electric field along the direction of the Langmuir pump and propagate transverse to this dircc- 

tion with wave number 

L J 

(Lin et al., 1986). We note that 

kT-%kL and ~ = w L + w s s w L .  

This is discussed fully in section 7. For the March I 1 event this gives AT = 360 km. 

Many efforts have been made to understand the type 111 mechanism as the result of ;I modula- 

tional instability leading to soliton fomiation and collapse. The experiniental evidence does not 

support this, and furthermore the threshold condition 

E: 
> 3 (Ak A,)', 

8 m k T  

where Ak is the half width at half maxiniuni of the spectrum of beam excited Langniuir waves is 

not satisfied. This is a complex subject with a very extensive literature, and shall not be discussed 

further here (but see Lin et d., 1986 and references therein). 



9 

Solar Wind Plasma Density Fluctuations 

Figure 2.4 shows a 3-hour time averaged power spectrum of solar wind density fluctuations 

that was obtained by Celnikier et al. (1981) by measuring the phase shift in a radio &ani propagat- 

ing between the two satellites ISEE-1 and -2. While fluctuations occur at all wavelenghs, it is par- 

ticularly noteworthy that fluctuations with wavelengths of -100 km have 6 n l n  2 1%. Little is 

known in detail about these fluctuations, and there are no results available simultaneous with a type 

I11 burst. On the other hand, density fluctuations of this level appear to be a universal feature of 

the solar wind, confirmed both by scintillation measurements (Coles and Hormon, 1978) and by 

recent Giotto satellite data (R. P. Lin, unpublished data). The fluctuations seem to be nearly isotro- 

pic with a ratio of fluctuations parallel to the interplanetary magnetic field to those perpendicular 

to the magnetic field being less than 2:l. Although these fluctuations may be a kinetic drift wave 

instability (Mikhaifovsky, 1983) resulting tiom initial solar wind inhomogeneities at the corona. 

magnetic field fluctuations suggest that they might be electromagnetic in origin ( M .  Goldrttcltt. 

private communication). 

For some time now there has been an awareness that density fluctuations must play a role in  

the type 111 problem. The first problem that has bothered people is that Langmuir waves come in 

clumps or packets -70 km in extent (see Figure 2.3). Since the electromagnetic radiation is very 

uniform in time (Le., Figure 2.1, 100-31.6 U I z  channels) one concludes that this clumpiness i s  spa- 

tial rdther than temporal. Smith ond S h e s  (1977) studied the propagation of Langmuir waves 

through a turbulent plasma using ray-tracing techniques to conclude that enhancements and reduc- 

tions would result due to random ray focusing. They concluded, however, that the n u i n  cause 0 1  

the clumping was that the rays would be resonant with the beam leading to growth in certain 

regions. lrnplications of this reasoning (or 3-wave processes have been examined by Mrlrose et ai. 

(1986). The remainder of this thesis is an effort to understand the effect of density turbulence in 

detail. In particular we will argue that the correct effects of the density turbulence can only be 

predicted by studying the full wave equation in random media, and that ray tracing is not a satis- 

factory approximation when attempting to understand wave behavior near critical density. 



I t  should be noted that much of the effort of solar radio astronomers has employed ray trncirig 

techniques to map observations at the earth back to the source region in the solar wind. Although 

much of this work is probably valid when identifying source regions, conclusions ;ibou~ the ex;ict 

size or geometry of source regions is questionable. 



3. Theoretical Introduction 

In order to make theoretical progress with this problem we use an action principle approach 

for a wave-plasma system (Dewar, 1970, 1973,1973; Johnsfon and Kmftnan, 1978a,b, 1979; Karrf- 

man et ai., 1984; Crawford et ai., 1986; Sirnilon 

approach we begin with a many particle Lagrangian 

ef ai., 1986; Korrfman. 1982, 1987). In this 

where represents a sum over all particles in the system. 
1 

This may be re-written, using a canonical transformation, as 

where 

(3.1) 

(3.2) 

is the single panicle Hamiltonian. The least action principle with this N-body Lagrangian, in prin- 

ciple, determines the time evolution of any (non-relativistic) system of interacting particles and 

electromagnetic fields. 

We shall divide the particles into groups according to the following distribution functions: 

1) f O c ( x , v , t )  = non-uniform solar wind background electron distribution; 

2) f ,,;(x,v,f) = non-uniform solar wind background ion distribution; 

3) f b c ( x , v , r )  = electron beam dismbution function. 

In the particulx type 111 problem, the beam density is 5-6 orders of magnitude below the 

solar wind density, and therefore, we make thc following separation of terms. We define E'', B ", 

AS', and qSc to be self-consistent fields arising from strong turbulence associated with non- 

uniformities in the solar wind, and then define E ( ' )  = E - E S C ,  B ( ' )  = B - B ", A(') = A  - A ", and 



13 

We use these definitions to expand the Lagrangian as: 

r 1 

(3.3) 

r 1 

r 1 

where i g G  refers to background particles and ib refers to beam particles, and i = i g G  + i b .  

Let us begin to investigate equation 3.3. We choose our definition of the self-consistent 

fields such that in the absence of beam particles, the first line completely describes the evolution of 

the solar wind background particles and their self-consistent fields, Le., variations of the first line 

with respect to AS', QSc,  xBG, 3nd pBG vanish. In general. for density distributions and magnetic 

fields present in the solar wind, this is an intractable and unsolved problem in strong turbulence 

theory which will produce a whole zoo of drift waves, magneto-acoustic waves, etc. We do not 

d~scuss this pan further, but imagine the problem solved, giving us the turbulently fluctuating back- 

ground distribution functions and self-consistent fields fo, (x, I - ,  f), f o e  (.v,v,r), ASC( .r , r ) ,  and 

~ $ ~ ~ ( , v , i ) .  We shall be concerned with the further evolution of the system due to other waves and 

the beam particles, having assumed that we can separate out the strong turbulence portion of the 

problem (not amenable to an order by order perturbation treatment). 
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In typical approaches to such problems the Lagrangian is hvided into n time averaged part 

and a fluctuating part. The time averaged part is defined as 

and the fluctuating part as 

- 
L = L - L .  

A suitable canonical transformation will transform the fluctuating part to higher order in the cxpan- 

sion, as discussed below. The order of a term in the expansion is given by the sum of the powers 

of the field quantities. In the approach developed by Johnston ond Kaiifrnan (1978), this transfor- 

mation is accomplished by a Lie transform on the particle coordinates x,, pi, giving a time averaged 

(guiding center) part plus a higher order term that will involve the electroniagnetic fields. The 

Lagrangian, expressed in the new variables, is then solved, order by order, using a least action prin- 

ciple. 

Thus we.define the transform of a function on phase space (.v,pj as (Cary. 1978; Lichrenberg 

and Lieberman, 1983): 

1 1 
2 6 

= 1 + L + - L’+ - L ~ +  ... 

where, if A = A  ( . ~ , p ) ,  then 

E [ w,A } ----- 
axj ap; ap;  ax; 

for any given w = w ( x , p ) .  

In this transformation scheme the new coordinate vari:tbles become 

P = e L p  

x = e L x  

and the particle Hamiltonian is 

K = e L H  
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if H is ordered, 

then we define terms in the transformed Hamiltonian: 

Where Lficldr is independent of the particle coordinates and therefore is unchanged by the Lie 

transform. This transforms to 

We choose w such that K")  vanishes, or H ( ' ) = - {  w,l lo}.  Since, in fact, { w ,  H O )  = for 

w = - j r  H " )  dt , integrated over unperturbed particle trajectories 

dt 

unperturbed trajectories, 

PO 
m 

x = x o +  - I ;  P =Po. 

The third h e  in equation 3.3 will time average to zero (since we assume that the turbulent 

spectrum means that there is little self-consistent field energy at a frequency and wave number 

resonant with the wave under consideration. This is supported by I. Cairns's (1984) argument that 

random phase processes do not explain the intensities observed. We shall also assunie that the last 

line in equation 3.3 can be ignored. This is equivalent to assuming that the turbulent fields have 

little energy resonant with the beam electrons, and so therefore the effect on beam propagation can 

be neglected. When the Lie transform is applied we will get a term of the form 
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where F is a function linear in its arguments. This term is very small compared with those of the 

2nd line also quadratic in A('), and therefore can be ignored. We shall from here on ignore ions in 

e2 e2 e? 
the quantities involving wave-coupling terms since the coupling terms go as - and - -. 

m me 4 

Wave Propagation in a Turbulent Plasma 

With the beam switched off, the evolution of a wave of sufficiently small amplitude that its 

effect is negligible on the development of the strong density turbulence, will be governed by the 

second line of equation 3.3: 

If we take 

then w = -J' dt H ( ' )  (Johnston and Kaufinan, 1979). 

Using this, we find 

Every term in this expression is quadratic in the fields. If we can use the ekonal representa- 

tion of 3 wave, then 

A = i e i e ( x , f )  + c-te ( x .  f )  

where 8 is a rapidly varying phase and i ( x ,  t )  an amplitude that is slowly varying in time and 

space. McDonald et (11. (1985) have shown that this is equivalent to 
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c* 

where D is the normal dispersion tensor. Variation with respect to thc ticld aniplitudcs then give5 

which is the usual dispersion relation. 

For example, if we only consider electrostatic waves of the form 

; ei(k..r,-wf) 

+ cc 
hi - w ; 

and 

Using the Vlasov representation of panicle phase space density: 

we find 

The quantity in brxkets will be recognized as ~ ( k ,  w ) ,  faniiliar from the usual plasma kinetic 

theory (Lifshir; and Pitaevskii, 1981). It should be recalled in examining equation 3.4 that this 

does involve the turbulent pllrticle motions, since j '  (x. \*, r involves the instantaneous particle posi- 

tions and velocities. 

While the Lagrangian approach does lead nicely to a dispersion relation in k-space in the uni -  

forni density case, it does not immehutely give us a convenient equation for the tinie dcpcndcncc. 

of wave amplitude in the turbulent case. Therefore, we back up a step m d  redo this part of the 

problcm using fluid equations of motion. (Nicholson, p. 27tf). Actually, thc fluid equritions of 

niotion follow from a Lagrangian such as equation 3.2 by taking suitable nionients of rlir 
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distribution function and expressing them as fluid quantities (Dewur, 1970). For the case of longi- 

tudinal waves: 

V - E  = - 4 ~  e ( n ,  - n;)  

We will further assume that ni = n i ( s ,  \*, t )  is already known kom tho strong turbulence prob- 

lem and that quasi-neutrality holds. This latter condition is quite good in the type 111 problem. 

since hD - 22 m, while hLangmuir - 2.8 km. 

We get 

The last term is O(v') and will therefore be ignored. Therefore, for longitudinal waves 

Beginning with Maxwell's equations, it is elcmentary to derive a similar equation for elec- 

tromagnetic waves 

* 3'E - --w;(s) + c- -  
a t 2  ax' 

E -- 

where again w&v) -= - n , ( . ~ ,  t )  is determined by the strong turbulence problem. 
m 

The properties of these wave equations form the content of the next chapter in Anderson 

localization. Upon concluding with that, we will return in chapters 6 and 7 to our Lagrangian to 

understand the beam-plasma and w;ive-wave interactions. 

. We discuss, finally, our assumptions about thc geometry of this problem and the effect of 

niagrirtic fields. At I AU, the IMF has an average value of 5 y  ( l y =  1 x LO-' gauss). An electron 

plasma wave perpendicular to the niagnctic field will have a frequency at the upper hybrid 
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frequency. 

7 1  a:,, = w; + 0; = 1.0001 16 wz . 

As this is much smaller than the fluctuation in the local plasma frequency ( -1-25).  due to density 

fluctuations, we will ignore this e!€ect. The major eft'ect of the magnetic field will be to constrain 

the (weak) electron beam to flow along the magnetic field lines. and therefore the wave vector of 

the Langmuir waves is directed approxiniately along the magnetic field. 
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4. Wave Propagation in Random Media 

Introduction 

A wave with wavelength A ,  propagating in a non-dissipative three-dimensional medium with 

a low density of scatterers with a scattering mean free path I' such that A a 2'. will exhibit 

diffusive behavior when observed at a distance L w 1'. As the density and strength of the scatterers 

is increased the diffusivity will decrease until, at some value of I' - A ,  diffusion will cease alto- 

gether according to the theory of Anderson localization. The wave will then be localized in space 

in a time-stationary quantized eigenstate. 

Wave propagation in a collisionless turbulent plasma such as the solar wind may provide one 

of the few observable examples of strong wave localization in a classical system. In general it is 

difficult to find systems which satisfy the Ioffe-Riegel criterion for localization, namely that the 

scattering mean free path should be of the same order of magnitude as the wavelength and that the 

dissipation length be much longer than the mean free path 1' (Anderson, 1985). In a weakly colli- 

sional plasma, such as the solar win4 the dissipation rate y for the electromagnetic waves will be 

of the order of - lo-'' and for the Langmuir waves of interest (since A w AD) - 
O P  O P  

Another factor that makes plasma waves attractive for studying localization is that the dielectric 

A& contrast - due to density fluctuations, where e is the dielectric constant, can be very large, since 
& 

for plasma waves the ensemble average <e> E 0 and for electromagnetic waves near the plasma fre- 

0' - 0; 
quency e - is very small. 

The condition A - I' is in fact a weak condition, and values of 1'IA as large as 50 have been 

observed to produce localization as argued by Trawal et al. (1986). who attributed the observed 

vanishing of positron mobility in gaseous helium to localization effects. The ratio 1'IA appears to 

be within the appropriate range of values for Langmuir and electromagnetic waves associated with 



20 

the type III solar radio burst. This is in contnst to the failure to observe strong locahation effects 

in the propagation of a laser beam through a slurry of small dielectric spheres (Watson et 01.. 

1986). The problem in this experiment was that the dielectric contrast was too low for latex 

spheres, and so the mean free path was too large. 

Before discussing Anderson localization, we begin lirst with a review of multiple-scattering 

theory in order to develop some of the language which will be important in localization theory and 

to show how multiple scattering theory breaks down in the regime where localization is imponant. 

4.1. Multiple Scattering Theory 

In discussing multiple scattering theory we rely on standard Green's function techniques d~s -  

cussed, for example, in Abrikosov et al. (1975) and applied specifically to the problem of propaga- 

tion in random media in Lux (1981) and Rickuy:en (1980). 

Multiple scattering theory begins with a wave equation of the form 

(4.1.1) 

One imagines that as r + f- the wave is in a packet which, however extensive, in a region where 

V ( x )  + 0, i.e., no scattering takes place. In this region the wave will asymptotically, as t + -00, 

be of a form 

where a;= 15; + k2c2. One uses perturbation theory to develop solutions which will again be of 

the same form for t + 43. A comparison between v(t + -m), and y(r + 00)  gives the scattering 

~ p i i t u d e .  

If we Fourier transform equation 4.1.1, we get 

[w'-a;-c2k2] v ( k ) = j v ( k  - k ' ) y ( k ' ) d k ' .  

Let us define a Green's function G(x, x', t ,  t') such that 
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The significance of the Green’s function is that if we have sonie initial condition, 

v0(x, r = 0) , then 

w (X , t  ) 3 j d 3 . ~  G (x, x’ ,  t , 0) yo (x, r = 0) 

is a solution of the wave equation. We also define Go(x.x’, t ,  t ’ )  such that 

GO ( x  - x‘, t - t ’) = 6(x - x’) 6 (  t - t ’) ax* 
3’ 

L 1 

In Fourier space this becomes 

[a* - a; - C%*] Go#, 0)  = 1 

or 

It can be shown that 

c ( k ,  0) = Go (k ,w)  + j dk’ G , ( k , o )  \ *  (k - k’) c (0,  k’) . 

This can be iterated to for a perturbation expansion in v to obtain 

C = Go + G o i G o  + Go\’Go\’Go + . . . 

where Go and v are integral operators (or matrices). 

One represents G diagramatically as and Go diagramatically as +. 
m. k w .  k 

We can represent 4.1.2 as 

T 

where x represents the interaction v. One defines a “self energy” ( k ,  0 )  with graph 

such that 

(4.1.2) 
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‘=-+ - 
This can be solved 3s 

1 

Go’ ( k , a ) -  C(k,a) 
G ( k p )  = 

In order to see how this theory works we consider a simple one-dimensional example. Let us 

consider a single perturbation in an otherwise uniform medium of the form 

the diagrams for the self-energy are 

plus terms of higher order in v .  

Using the rules in the above cited references, the first order diagram for the self-energy just 

leads to a shift in the average plasma frequency. The second order diagram in the self-energy may 

be evaluated as: 

where - corresponds to the normalization of the inverse Fourier transform, and where 
2 Z L  

Therefore, 

and then 

I 
7 7  

G ( k , 0 ) =  
0- - 0; - 2 k ’ -  c ( k .  0 )  

The pole avoidance procedure is that 0 + w +  iq correspondmg to the retarded propagator. For vo 



sufficiently small, we will only be interested in when w2 - 0; - c 2 k 2 z  

ivg I,' 
2kc2 

approximation z(k, w) 3 - we find 
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In this case with the 

And we see that the self energy then represents a lifetime for the excitation. 

1 
L For a large system with many scatterers we replace - with N, the volume density of scatter- 

ers. and we take an ensemble average. Then 

In order to ensure that higher order terms in the expansion may be neglected in the self-energy, we 

require that x(3)e c(2). But by examining the third diagram in c ( k ,  w) one estimates that 

vo 1,' 
C2 

Therefore, we expect that a perturbation theory will break down when - - 1. As we shall see 

in the next section with yo= &up, this is the regime when Anderson localization becomes important, 

and wiU be the parameter regime of importance for the type Ill problem. 

If we have an initial amplitude y(xo. ro). we can compute the transport of probability density 

as 

a - I l y ( X , I )  12 
at 

Using the Green's function language 



(4.1.3b) 

where G R  = G = - 
is the retarded Green’s function and 

G*=G*=c= 

is the advanced Green’s function. 

Expanding (4.1.3) gives diagrams which include the “ladder” diagrams: - 
( P I  > 

> P 

I ’  
1 1 1  
I I I  

t r r i E  
1 I ‘ C ‘  

e . .  + nt? 
I ! .  

and the maximally crossed diagrams: 
I ,- > . . /’ 

*.,? ,+ 

‘ 0.‘. . 

\ 

< 
Langer and Neal (1966) showed that in evduatmg hffusivity in random media these two sets of 

diagrams are the most important, and that, in fact, their sum diverges unless one adds in finite life- 

times in the unperturbed propagators (the Go or light lines in the diagram). 

Particularly important is that the ladder and crossed diagrams interfere constructively for 

exact backscattering. This is a consequence of the time reversal symmetry of the backscattering 

processes (Gor’kov, 1977). Because this constructive interference is a symmetry that survives 

ensemble averaging of the above two-particle diagrams it is expected to be a dominant effect and 

lead to enhanced backscattering. This enhancement has been observed recently by Van Albeda and 

Lagendijk (1986) in an experiment that measured the backscatter of laser light from a slurry of 

glass beads, and is also important in understandmg experiments on electron mobility in thin hvo- 

dimensional films. The parameter regime where enhanced backscatter is observable, but behavior is 

otherwise diffusive, is often referred to as “weak-localization.” 
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One of the major difficulties in studying localization effects analytically is that 

<GA GR>#<GA><GR>. Correlation effects are the essence of Anderson localization theory. 

Enhanced backscatter, for example, depends upon these correlations. We shall return to the issue 

of two particle Green’s functions later in the next section. 

Before concluding this section on multiple scattering theories, we mention the effort of 

Muschiefti et 01. (1985) to understand the effect of 3-D density fluctuations on beam-plasma insta- 

bilities by considering the Fokker-Plank equation 

where 7, is the Langmuir growth rate for wave vector k, w& is the wave energy density, c ( q )  is the 

specaal density of fluctuations of wave number q. and 6,  is the rate of spontaneous emission. It 

was concluded that the diffusion of Langmuir waves led to the quenching of the beam-plasma pro- 

cess in the case of electron beams in the solar wind unless special assumptions about the anisotropy 

of solar wind density fluctuations are made. This theory is equivalent to a first order scattering 

theory, and ignores the possibility that as a result of inlinite order scattering effects, a wave may 

remain in resonance with the beam for a long time. 

4.2. Anderson Localization 

As mentioned in the introduction, for sufficiently strong random scatterers waves do not 

diffuse in space, but rather are localized into normalized eigenmodes. The theory of wave localiza- 

tion in random media was first proposed by P. W. Anderson (1958) to explain the experimental 

result that electron spin polarization diffuses very slowly in highly doped silicon at low tempen- 

tures. Anderson studied the model Hamiltonian 

icij = aj + C Vjk ak 
k 

(4.2. I )  

where ai(f)  represents the quantum mechanical amplitude at the site i on a lattice, V,k is a (weak) 
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coupling between sites and Ej  is the local site energy. The crucial point in the Anderson model is 

that Ej  is taken to be a random variable, uncorrelated from site to site. For most of our discussion 

the probability distribution for E is: 

although it is argued that the exact nature of the distribution is of little consequence, the width 

being the important factor. 

Equation (4.2.1) can be interpreted as the Hamiltonian for an election in a random lattice in 

the tight binding model, and therefore has been much studied in the context of solid state theory in 

order, for example, to understand the low conductivity of amorphous materials. It is relevant to our 

discussion since it is equivalent to the wave equation for either Langmuir or electromagnetic waves 

expressed as a finite difference equation. 

Localization in One Dimension 

Let us start with the wave equation 

--- a2w - w i ( x )  y - v2v' y 
a t 2  

where 

cz for electromagnetic waves 

for Langmuir waves 

and look for time stationary solutions -- 'W - - w'y.  We rewrite this as a finite difference equation 
a t 2  

in x where 1 is some small length: 

v" 02y = w j ( x )  y - 2 ( y ( x  + I) + y ( x  - I) - 2ly(x)) 
1 

(4.2.2) 

With the following definitions: 



Wj 3 Wj+l- Wj 

and 6aj, = wj(xj) - q2 where q2 is the square of the avenge plasma frequency, equation 3.2.2 

becomes 

(3.3.3) v2 ' 
- (Wj+l- vj> I' a ' ~ j  = (5' + 6 a;, vj 

In order to understand the nature of localization in one-dimension, we reproduce an argu- 

ment, originally due to Morr and Twose (1961) and recast by Escande and Souillard (1986). 

The general rule for solving a second order finite difference equation of the form 4.3.3 is to 

use a leapfrog method, by which y' and y are alternately advanced. This gives a solution that is 

accurate to O ( G )  rather than just O(Ar)  (Birdsall and Langdon. 1985). 

This gives lirst: 

and second: 

(3.2.3) 

(4.2.5) 

where we define 

1' 
V 2  

E = - (a2 - Gj) k2I2, 

- 2  

and k'= 

cussed later. 

- 
. This is sbctly a definition and its interpretation as a wave number will be dis- 

V2 

We write (4.2.4) as 

and (4.2.5) as 
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which gives 

In the case where E j  = E, a constant, for all j ,  M j  is easily seen to be a unimodular matrix with 

eigenvalues 1 * i &+ o ( E ) .  Iteration in this case gives: 

M,-l ... M , = M "  

with eigenvalues eiik" = e f i k ,  and therefore reproduces the solution expected for a uniform 

medium. 

In the case where the Ej's and therefore the Mi's are nndom an initial condition. p] * is 

propagated as 

VO 

VO 

We can define a Liapunov exponent 

1 
N-PW N 

A = lim - Tr Mi ... M I  M,) 

It was first proposed by Mort and Twose (1961) and later proven rigorously by H. Furstenberg 

(1963) that for such a set of random matrices > O  almost everywhere, i.e., except for E taking 

values on a countable set (E,] .  The significance of this is that almost any initial condition will 

developed an exponentially growing wave envelope going as e at site j .  An exponentially 

decreasing sequence is developed as follows. If 

1 I J-jol  

1 I J-101 

II I1 - e I1 y j o  I1 

then we define 
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Lf this is propagated backwards, 

wiU be M exponentially decreasing sequence, although if continued beyond w,, would again 

increase exponentially except for certain discrete values of E. We produce exponentially localized 

states by matching solutions from the left and right following an argument due to Molt  and Twose 

(1961). Begin with two initial conditions, say, , 1: 
and 

one then adjusts E and such that [:I] = 

duces a discrete set of values for E 

and [::It where n is large. One then finds 

. Heuristically, one expects that thls pro- 

The theory of localized states and the nature of the spectrum in one dimension was put on a 

rigorous mathematical basis by Kunz and Souillord (1980). An important point from localization 

theory is that in one dimension all states are localized. There are no good analytic expressions for 

localization lengths for WIV 2 1. Escande and Souiflurd (1985) determined the Lispunov 

exponents numerically for the product of random mamces ... M, Mn-l ... hi, Mw The results are 

shown in Figure 4.1. The relevant parameters are 

WIE = S $ / k 2 v i  

and 

E = k'l: . 
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The Liapunov exponent is 

IC 
Y= T 

3 

where 5 is the localization length, and I ,  the “correlation length” is the distance over which w;(.r) 

is constant. 

We now consider the correct interpretation of the quantity 

? ?  k’= (0- - w;)/v2. 

Clearly, when V j  rO for all j, as we have shown, k is the wave number of a plane wave propagat- 

ing in the medium. In the case where k 3* I/{, Le., where there are many wavelengths (for the 

homogeneous case) in a localization length we would expect that the wavelength (measured as 

twice the average spacing between points where y=O, say) would remain the same. since the 

fluctuating value of the spacing should average to zero, as should be the case when W I E  is small. 

This is not entirely true, since although the fluctuations are uncorrelated, the localized waves are 

correlated with the fluctuations, but this interpretation is borne out by the simulations in section 5. 

The physics of localization in a plasma is as follows for a plasma wave. or for an electromag- 

netic wave traveling near the critical density. The plasma may be vicwcd as a collection of weakly 

coupled harmonic oscillators. Each oscillator has the resonant frequency w&r) = + 6 o&Y). If 

an oscillator is initially set in motion, it will couple to adjacent oscillators. Physically, how well 

this energy is coupled to adjacent oscillators will depend on two factors: 

(1) The dcphasing rate 6wpi - 6upj of the two adjacent oscillators: 

(2) The coupling strength -k’v’ which is a which measure of how well one oscillator can 

overcome the dephasing tendency of an adjacent oscillator, 

”; 
and thus the importance of the panmeter - kl,,’ . 

The othcr important parameter in localization theory is 
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which measures how near the frequency is to the “band edge.” This will be discussed further 

below. 

Another way of viewing localization is that it is an infinite order scattering process in which 

a localized wave is self-consistently scattered back onto itself while the phases of the waves scat- 

tered in the “forward” direction are random and cancel out when viewed far in the forward direc- 

tion. 

Kun: and Souillurd (1980) have shown that the spectrum of the equation 

iliri = vi v+ [ K + l  + vi-I - 2vi1 
is 

[O, 41 + s1ipp r 

where 

s i r p p r ~ ( ~ ’ , I P r o b [ ~ ~ { V o - ~ , V o + ~ } ] ~ O  for all E > O }  

This is equivalent to the set 

lo’ I o ’ = o ~ + [ - g o ~ , ~ o ~ ] + [ o , i l , ’ ~ / 1 4 - ] ]  

for equation 1.2.3. For waves in a continuous medium, I +O and the upper h i i t  of this set has no 

meaning. 

This tells us nothing about the probability of finding a state located within a finite region of 

size much greater than the localization length. For example, for weak perturbations, a wave with 

approximate wave number k will have an energy which is near the value o ’ = o ; - 6 o ; + k 2 v 2  

with very small probability, since the probability of almost every wave peak aligning itself with a 

density niininium is very small. 

In localization theory an important parameter is how close o2 is to the “band edge,” -go;. 

The concept “band center” does not have strict mcaning since there is no upper bmd limit as is 

the case for a crystalline lattice. By making k’ sufficiently large, we can make the localization 

length in one dimension arbitririly large provided the condition h-’ A: e 1 remains met for plasma 

waves. 
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Localization in Higher Dimensions 

So far we have only considered localization effects in one dimension, and higher dimen- 

Anderson's original approach was to take the Laplace sionality effects must be considered. 

transform of (4.2.1) which was written as 

where the initial condition is uj(t=O) = Soj.  Solving for fo gives 

VIo + . . . Vkl - 
i 1 1 1 

VOk - r s - E o  i s - E o  [ is?Ek i s - E ,  f o ( s ) = - + C  - 

The question whether energy remains localized is equivalent to the question whether lim ao(t)  2 E 
r + m  

for some E > O .  This is equivalent to lim f o ( s ) 2 E .  This will in fact be the case provided that 

the self energy at site i = 0 

R.(s)--rO 

(4.2.6) 

converges. Anderson studied this by considering the probability of the value of very long 

sequences when the Ei's are random variables. Anderson argued that the self-energy would con- 

verge with probability 1 whenever W / V  > ( W / V ) , ,  where ( W I V ) ,  is to be determined. Anderson's 

estimate was that ( W / 2 V ) ,  = 2K In ( W / 3 V ) c  where K is the connectivity of the lattice (fiom perco- 

lation theory) and is approximately :- 1.5 where : is the number of nearest neighbors. Thouless 

(1979) argued that this estimate is high because Anderson assumed that the contribution of each 

sequence was independent. Accordingly, a better estimate is 

(5) =4K. 
c 

A more transparent, but less rigorous argument for this is the following: The amplitude on a 

neighboring site will be 

V 
uj - - ai . 

Ej - Ei 
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Since the values 

z neighbors then 

in the denominator can range behveeri f W / 2 ,  a typical value is W / 3 .  If there are 

we require 

1 W ‘ J -  < - > o r  ->>z .  
ai - WI4 Z V 

Even this estimate, it turns out, is high. The most convincing numerical work on this was 

a,,  where the 

sum is over nearest neighbors, by diagonalizing the Hamiltonian on 3 lOOx 100 grid. They found 

that for WIV > 6.5 a tnnsition occurred between extended and stron_gly localized states. Tfioiiless 

(1979) later argued that when WIV- 6.5 the state is localized with a localization length on the order 

of the size of the system. 

done by Yostiino and Okazuki (1977), who solved the Hamiltonian Eo, = E, u, - 1’ 

J 

Actually, it is believed that WIV =6.5 is a tnnsition point between strongly and weakly 

localized waves in 2-D. According to scaling arguments (Abralunis et al.. 1979) a11 states in 1-D 

and 2-D are localized, and for 3-D there is a critical value, ( W I V ) ,  above which states are local- 

ized. Licciarddlo und Tfioidt>ss (1978), looking at the sensitivity to changes in boundary values. 

concluded that 3-D wave functions are apparently localized for the diamond lattice for 

9 <- ( W I V ) ,  I 12 but the localization is slower than exponential. For the cubic lattice, localization 

occurs for WIV E 15. This was confirmed in a numerical study by dlcKirtrion (1985) who studied 

the scaling with M of the localization length of long I-dimensional chitins when M’ adjacent 

chains were coupled together using nearest-nsirhbor coupling. His localization estimates were 

again based on a Liapunov exponent estimate. Also of great importance is that the nornialized 

localization length A = < ( M ) I M  in C x t  was found to follow the behavior A -  I / M  for strong locali- 

zation ( W I V  2 2 9 ,  thus suggesting that for strong localization, the Ioc;\lization length is only 

weakly dependent on dimensionality. 

A significant difference between our wave equation and that of the Anderson theory is that in 

our case there is no natural discrete lattice. In a crystalline lattice there is an upper limit on the 

wave vector in  the unperturbed case corresponding to the first Brillouin zone. For Lmgmuir waves 

or electromagnetic waves there is no upper band edge, and for frequencies high enough, the wave 
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will be delocalized (ignoring Landau damping for the moment). 

It is not straightforward to compare parameters in the solar wind plasma with the critical ratio 

(WIV), to determine dimensionality effects. The difficulty is a result of 1 in (4.2.3) being much 

smaller than the scale length of the change in y. i.e.. much smaller than a typical wavelength. But 

on this scale the density fluctuations may not be (and in the solar wind plasma are not) decorre- 

lated, SO that w j ( x =  j l )  is not independent from one lattice site to the next. Therefore, this situa- 

tion is significantly different from the solid state case where perturbations are (assumed to be) coin- 

cident with lattice sites. 

We can approximate the situation by imagining that our plasma is divided into a lamce with 

pieces of size 1, where 1, is the correlation length of the density fluctuations. Each piece is then a 

separate hannonic oscillator. 

+- I 2 3 4 
For a state with frequency w. the wave number in each piece will be a function of the o$, . The 

coupling 

piece 2. 

V 
between, say, oscillator 1 and 3 through 2 wdl be where vg is the group velocity for 

1, 

Therefore, 

We use vg rather than v when looking at the plasma on a scale 1 ?A. When observed at 

small scales 1 <A, the weak coupling v leads to propagation at the group velocity for &stances 

- >A. Further rescaling will not change the group velocity. Dividing the plasma into pieces larger 

than 1 - 1, will smooth out the density fluctuations. On the other hand, on these larger scale 

lengths, the coupling between pieces becomes a complicatcd function to account for scattering and 

decreased transmission which are strongly dependent on frequency at this scale length. 
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Using an average group velocity given by 

for Langmuir waves 

= 1 5 for electromagnetic waves 

60' 
and using the parameters for the 11 March event, estimating I, - 100 h, and = .01, for the 

a$ 

Langmuir waves: 

k = 2.3 x lo-' cm-'; 

ve = 2.4 x107 cm/sec 

W I V  = io7 

for the electromagnetic waves: 

k = 1.7 x cm-' 

vg = 1.9 x 10' crn/sec 

W / V  = 1800 

In both cases, this greatly exceeds even the largest estimates of (WIV) , .  Our estimates for ZV/V 

here may be too large because of overestimating I, and IC' could conceivably be smaller by as much 

as a factor of 25 or greater. 

Once establishing that W / V  > ( W / V ) ,  so that waves are strongly localized. of more practical 

importance will be estimates of WIE and E ,  the panmeters used in the Escande und Souillard 

(1985) study. 

For the Langmuir waves 

for the March 11 event where vb is the beam velocity. Likewise, if we could treat the transverse 

waves 1-dimensionally (which we cannot) we would get, using &=360 km for the March 1 1  

event: 
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If f, = 100 km, E = 3.00, and plot 4.1 gives approximately y =  2. So 4; = 500 km. 

A ddticulty in making localization estimates for the type III problem comes from the nature 

of the turbulent density spectrum, as discussed in section 2, which is that there are large amplitude 

long-wavelength fluctuations simultaneous with smaller amplitude, shorter wavelength fluctuations. 

If the localization length from the latter is smaller than the correlation length of the former, then it 

is the small amplitude short wavelength fluctuations that are important. That this may be so for the 

Langmuir waves is evident from the following. Using the 11 March 1979 parameters, if density 

fluctuations have a scale length f,=2 km, then E =21. If the localization length 4; - 70 km, then 

Sn we estimate from Figure 4.2 that WIE P .5, which gives - i .003, required to give this localiza- 

tion length. The actual localization is therefore dependent upon the fluctuation spectrum. 

n 

Scaling Theory of Localization 

The first successful scaling theory of localization was proposed by Abrahams et ai. (1979) 

who used the scaling of the conductance of a sample with scaling of size to find that a11 one- and 

two-dimensional waves are localized in a random system and that a mobility edge exists in these 

dimensions, delimiting a transition between extended and localized states. This scaling theory was 

verified numerically by McKinnon (1985). discussed earlier in this section. Although all states in 

one- and two-dimensions are localized, Figure 4.2 and the numerical work of Yoshino and 0ka:uLi 

(1977) indicate that there is a transition between weakly and strongly localized states. 

Another way of viewing the localization problem mathematically is to look at the Green’s 

functions which are solutions of 

[-c2V2+ v ( r ) -  E ]  G ( r ,  ro)= S ( r -  r o ) .  

They may be written as 
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where AIR determines whether it is the advanced (retarded) Green’s function, and a is an eigen- 

state label. Now G ( r  - to) 3 0 as I r - ro I + 00 if al l  the wave functions are localized. 

As discussed in the previous section, the quantity 

D - < G A ( r - r r O I E ) G R ( r - r 0 , E ) >  

where the average is an average over the statistical ensemble [ v ( x ) ]  is important in the study of 

wave localization. For localized states 

where d 2 1 is the dimensionality. An important property of this Green’s function is that as the 

disorder, WIE, approaches a critical value the correlation length 5 becomes infinite. This sudden 

transition of the correlation length is a universal property of phase transitions, in this case called 

the Anderson transition. By applying techniques from renormalization group theory and the theory 

of critical phenomenon Wegner (1982, and references contained therein) argued that the rate of 

diffusion for frequencies above the mobility edge scales as 

where v is some exponent (called the critical exponent). In 3-D one gets a “phase d~agram” 

(Stephen, 1983) 

where states lying within the hatched area are extended. In a solid, the boundary is determined by 

the dashed line, but as we have discussed, for a plasma, there is no upper band edge, and for 

sufficiently large values of EIV states will be extended. 

An important conclusion from this is that in 3-D, for any disorder there is some energy 

- 
E,  > o$ - 6wj, Le., above the band edge, below which the states are localized. To see how this 
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might be the case we return to Anderson's argument and consider the probability of convergence of 

the series 4.2.6. As is+ E + iq, where q + 0 and E + -W/2. the probability of small denomina- 

tors decreases and therefore the probability of convergence increases. 

We consider the implications of this for the type III problem. The Merence between the 

frequencies for the waves in the 11 March case are 

f L ' f p l u m . 2 4 5  Hz 
and 

fT- fpIum.Z25 Hz. 

Therefore, even if we greatly overestimated WIV for the transverse waves for typical solar wind 

parameters, f T  may be below the mobility edge in any case. since f T  is so near the "band edge." 

In the second place, if fT were in fact above the mobility edge, it would be expected that the rate 

of diffusion would be very small. The consequence of this is that a trmsverse wave that originated 

in a given region would still be "approximately" quantized, resembling a given stable bound state 

in quantum theory, and therefore, the imptications for the type III problem would be little Meren t  

than what is discussed in section 7. 

Localization and Mobile Density Fluctuation 

By applying normalization group techniques Vollhardr ond Wove  (1980, 1982) argued that 

the ladder and maximally crossed diagrams (4.1.7) are responsible for the Anderson transition. If 

these diagrams are the most important for localization then this provides an estimate for the effect 

of the mobility of density fluctuations. The destruction of enhanced backscattering in the weak 

localization limit was studied by Golubenrsev (1983) who concluded that the loss of phase coher- 

ence due to the destruction of time reversal symmetry for the backscattered wave is important when 

r >  T, where T is the mean time between wave-scattering and T+ = (3r z:)"~ is a measure of phase 

coherence time when the scatterers are mobile with r, the average time for 3 scatterer to navel a 

distance A ,  the wavelength of the wave. In this computation Golubenrsev assumed that the scatter- 

ers had independent random velocities with a Maxwellian distribution. We estimate r = </V ,  and 
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r, = klcs and define 

I13 

where c,  is the velocity of a density fluctuation. Then we expect localization will be preserved for 

aG w I ,  and destroyed for aG ,< 1. 

If we use the ion-acoustic velocity for c,, then for the 4 March event. for the Langmuir 

waves a G  = .9 and for the transverse electromagnetic wave aG - 100. This would indicate that the 

Langmuir waves may not be localized, but that the transverse waves probably are. We mention the 

following points: 

(1) As we shall see in numerical simulations in section 5 2 ,  when localization is very strong, 

waves will become localized by a co-moving group of fluctuations and scattered by the remainder. 

(2) Although little is known about the source of the turbulcnce in the solar wind, very often 

in plasma turbulence there is an average drift along or across the magnetic field relative to which 

other turbulent motion is slow. Thcrcfore phase coherence may be prcscrved longer since the ran- 

dom component of the velocity can be much less than the average velocity. 

(3) This estimate is based on only the dcstruction of time reversal symmetry of the enhanced 

backscattering. In fact, for strong localization, the phase reinforcement comes from a fortuitous 

coincidence in the scattering off of different fluctuations in the neighborhood of the localization 

peak. 

Density of States 

Also of importance to us will be the density of states. In this problem we are primarily 

interested in waves which are resonant with a particlc beam. For this to be the case, we expect that 

the waves of interest will have a localization length [hat extends over many wavelengths. The den- 

sity of states will determines how many statcs/volurne the bcam can resonate with and therefore 

how much beam energy will be lost in exciting localized waves. 
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For any finite homogeneous system of length L, the density of states is given by the usual 

formula 

(4.2.7) 
L J  

where d is the dimension of the system. For a disordered system and for E < E , .  the density of 

states corresponding to bound states is discrete while for E 2 E, there is a continuum of states 

corresponding to the freely propagating waves. The question is how closely we c m  approximate 

the density of states by the expression 4.2.7. As numerical work by Deon (1961) has shown, away 

from the band edge, the density of states will closely resemble that of 3.2.7. while for frequencies 

near the band edge the density of states is highly perturbed. We expect that for waves whose local- 

ization length is many wavelengths in extent, the frequency will not be near the lower band edge 

(since the probability that the minimums of that density will correlate with an extended wave is 

very small). Therefore, we expect 3.2.7 will be close IO the actual density of states. 

Using the parameters for the March I1 event, the number of states in one dimension in a 

- .05, the apparent width of the localization length 5 2 7 0  km, resonant with the bean) with - - A vb 

vb 

positive slope region, is approximately 

Finally we consider the conditions under wluch localized states are resolvable. The density 

of states in 1-D is given by 

dn L 
dk 2 1 ~ ’  

=- - (4.2.8) 

21F 
L which gives dk = - dn. In order to determine the separation in frequency of modes contained 

within a localization length 5. we start from: 

dw = vg dk where vg is the group velocity. Using 3.2.8 gives 
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5 
Am%- . The length of time tR to resolve two such states is given by the requirement 

r, Am 227r, which gives rR 2 which might have been guessed heuristically. 
v g  

Summary 

We have reviewed Anderson localization theory which leads us to expect that electromagnetic 

and possibly Langmuir waves will be localized by the density fluctuations in the solar wind plasma. 

Theoretical predictions are consistent with experimental observations. The theory in this section 

will be used in interpreting the numerical simulations of the next section. 
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5. Numerical Simulations - Propagation of Gaussian 

Wave Packets in Random Media 

We present the results of a series of numerical simulations of the time development in a ran- 

dom medium of an initially Gaussian wave packet. While numerical work has been done by others, 

in order to study localization the usual approach has been to diagonalize the Hamiltonian to find the 

eigenstates of a random lattice. This has usually been in the context of solid state theory and lat- 

tice sizes have usually been small (100x 100 grid points) (Dean. 1961: Yoshino and Oku:aki, 

1977). To our knowledge time development with mobile fluctuations has not been studied numeri- 

cally. 

Here we investigate the time development of an initial wave which presumably is the overlap 

of many localized eigenstates. In section 5.2 we also investigate the effect of mobile density 

fluctuations. This study has used the program PEFUOC, discussed in detail in Appendix B. This 

program propagates an initial Gaussian wave packet accordmg to the wave equation 

with the initial conditions: 

aw - (x, t = O ) = O  
at 

- ( x  - x 0 ) ~ l A 2  w(x ,0) = wo cos ko(x - xo) e 

periodic boundary conditions 

w&r) is a random variable on the interval [ 1 - dn, 1 + dn] .  

In most of the simulations shown dn = .01, corresponding to a 1% density variation. The simula- 

tions are done on a spatial grid of 2048 or 1096 grid points. The fluctuations in o$ are constant on 

steps typically of 4 or 8 grid points. A typical plot of the value of W;(.T) is shown in Figure B. 1. 
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We plot the following quantities at various times. 

Psi: y(.r, t )  =amplitude. Since this is a linear problem, the units of this quantity are arbitr.ary. 

This is the numerical value of the Hamiltonian density which generates the wave 

equation. This should be a slowly varying quantity, and therefore a better indica- 

aY ' 

at 
tor of localization than y or - individually, which oscillates in time as wp. 

The following symbols are used in describing each simulation. The quantities are discussed in 

section 4.2 and values of WIE and E are used to enter Figure 4.1 to determine the predicted locali- 

zation length 5 

ko= 

C =  

n, = 

E =  

WJE = 
Y= 

1, = 

5 =  
dn : 

vg = 

' p  t = 

central wave number of the initial Gaussian wave packet 

velocity in the dispersion relation o2 = $ + c-k- ; a; 
number of grid points in a density fluctuation step 
length of density fluctuation step (correlation length) 

k z  1,' 

Sw~Jk~c2 
Liapunov exponent from plot 4.1 
&ly= predicted localization length from the theory of Escande and Soiiillard ( 1984) 

the plasma frequency m j  is a random variable on the interval [ 1 - dn ,  1 + d n ]  
kc2 - (group velocity) 
*P 

total distance propagated at the group velocity at the end of the run. 

7 7  1 1 

In interpreting these simulations the following general remarks pertain. 

1) Lf y - e-' l r ' ,  then energy - e-2*- I . Therefore, the localization length will be the 'A width 

of the wave packet at the amplitude E = E,,, e-'. 

2) Although it might be expected that results would only be valid after a time t such that 

vgt  w 5; in fact we find very good agreement with theory when lvgt 25.  

3) An important qualitative difference between ;I freely propagating and n locdizcd wwe can 

be seen in the energy. For a propagating wave, y - c o s ( k - ~ - u ~ r ) ,  and so, for small L.', 

0' 
E - [cos'(kr - opf) + sin' (kx - wpl)l - constant. For a standing wave, on the other 

3 - 
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hand, ry - cos kx cos ot and so for small e’, E - m i  cos’  COS' mt + sin’ w t )  - cos’ kx .  For 

a propagating wave the energy density will have a smooth envelope, while for a standing 

wave it will be modulated with wave number k. 

Free Propagation 

Figures 5.1 and 5.2 show freely propagating waves (constant density). These are to be com- 

pared with the other simulations in this section which are all with randomly fluctuating densities. 

These two runs show the free propagation at the group velocity of two initial Gaussian wave 

packets. The initial excitation of the form 

-K I X - X g  1 
v(-y) = WO e cos ko ( x  - xo); y(x) = 0 

is seen to split in two and propagate in opposite directions. The dispersion relation is 

o ’ = o ; + c 2 k 2  with o;=l 

in both cases vgt is veIy close to the distance which the peak of the envelope propagates. The 

parameters in these simulations are the following. 

Figures 5.1.1-5.1.5 Figures 5.2.1 -3.2.; 

c=.2 c=.05 
k0=.16 ko= 1.7 

vg = .0064 vx = .OM3 
vgt=51 .2  v*t =34.4 
ng = 4096 ng =4096 
dt = .2 dt = .2 

5.1. Localization Length Studies 

The following series of simulations shows the effect of time-stationary random density fluctua- 

tions for a wide set of parameters. The observed localization lengths are consistent with the values 

from Figure 4.1. 
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Figures 5.3.1-5.3.6 

Parameters: 
k0=.16 
c= .2  

dn = .01 
nc= 16 

This set shows the time development for the same Gaussian 

wave packet as for the freely propagating case shown in plots 52.1- 

5.2.5. In this case, however, the density fluctuations are strong and 

1, = 1.22 localization is quite evident. In plot 5.3.2 we see the high wave 
E=.W 

WIE =9.8 
vo = .0064 
ng = 4096 
d, = .2 

number small amplitude signal propagating at the velocity c. This is 

the Sommerfeld precursor (Jackson, p. 9, p.313 ff.). With WIE = 9.8 

this is far removed from the plotted region. We might estimate y -  . I  

and therefore i - 12, which is of the same order as the observed localization length. In this case, 

however, we do not expect kolc to be a meaningful quantity since the wave is so strongly distorted. 

Figures 5.4.1-5.4.4 

Parameters: 
ko= .32 
c = . 2  

dn = .01 
nc= 16 

I ,  = 2.54 
E =.66 

W I E  = 2 . U  
v =.0128 

vxt =307 

5=31 

g 

y= 8 x lo-' 

Figures 3.5.1-5.5.6 

Parameters: 
k,=.85 
c=.15 

dn = .01 
n,=3  

I ,  = 46 
E=.154 

WIE=.61 
y = 3 ~ 1 0 - ~  
€,=I53 
v,=.019 

Vn' =570 

We have run this for 120,000 time steps to r =24,000. Despite 

the very strong localization, there is still very good agreement 

I 
between the predicted and the observed localization lengths. y is 

estimated since WIE =2.41 is not on the graph of Liapunov 

exponents Note that localization is very strong even though 
I 

v,tI< G 10. I 
t 

We show the time development of this in some detail. This 

shows a CXL' where the final localized wwe packet is -30 

wavelengths long. The initial wave packet is confined to a region 

much smaller t h m  the final lociilized wave. The wave packet splits 

and begins to prop::gnte, as seen at t =2,000, however, there is evi- 

dently already significant reflection and a significant amount of wave 
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energy remains in the initial region. By t = 12,000, the outward pro- 

pagating portion has been significantly depleted and by time 

t = 18,000 there seems to be little propagation. It is evident in the energy plots at t =20,000 and 

r = 22,000 that the observed localization length is - 150, consistent with predictions at t = 28,000. 

It is more confused since propagated energy does wrap around due to the periodic boundary condi- 

tions. 

The initial and “final” conditions are exhibited for the following sets of pwameters. 

Figures 5.6.1-5.6.3 Figures 5.7.1-5.7.3 

Parameters: Parameters: 

ko= 1.28 
c=.07 

dn = .01 
nc=8 

E = . 1 5  

I’ =.0062 
vgt =50 

y=8 x 
< = 3 8  

1, = .306 

WIE = 1.24 

8 

Figures 5.8.1-5.8.3 

Parameters: 

ko= 1.7 
c=.o5 

dn=.Ol 
nc=8 

E =.27 
1, = .306 

vg=.0O4 
V 8 t  =34 

<=20 

WIE = 1.37 

y= 1.5 x IO-’ 

Figures 5.9.1 -5.9.3 

Parameters: 

ko= 1.28 
c = . l  

dn = .01 
nc=8  
I, = 1.23 
v,=.013 

v,t =?30 
E =2.17 

WIE =.61 
y= 1.2x lo-* 
<=IO0 

ko= 1.7 
c = .05 

dn=.OI 
n,=8 
IC = .3 

I’ =.w 
I = 34 

E =.27 

R 

WIE = 1.38 
y = 2  x lo-’ 
$ = 15.3 
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5.2. Effect of Time Varying Density Fluctuations on Localization 

In a real plasma the density turbulence is not time sutionary, and therefore the effect of 

motion of the density fluctuations on localization must be studied. As discussed in section 4.3 we 

expect that the parameter 

will be important in studying the effect of the mobility of density fluctuations. 

One would expect that for aG % I waves will remain localized, but might spread at a rate 

corresponding to the velocity spread of the density fluctuations. As aG decreases to aG - I one 

might expect to reach a point at which the wave is no longer localized and therefore the wave 

packet will spread diffusively. In fact, in the numerical work presented, for strongly localized 

waves, this does not seem to be the case. 

Density fluctuations moving uniformly with a velocity v <  v ~ ,  the group velocity of the waves, 

are stationary in a co-moving frame and should not affect localization. This has been verified 

numerically, but is not presented here. 

A second possibility for one-dimensional turbulence is that density fluctuations have a con- 

stant speed and may be directed either to the left or to the right. To investigate the effect of this 

we form two random independent distributions 6nl  (x) and 6 n 2 ( x )  on the interval [ . 5 -  d n / 2 ,  

.5 + dn/2 ]  and form the time dependent distribution 

6 n ( x , t ) = 6 n ,  ( X - c C , t ) + 6 n ~ ( X + C * r ) .  

The results of these simulations are shown in Figures 5.10.1-5.10.6 and 5.11.1-5.11.6. In these 

cases one has to remember that the sum of two uniform distributions is not a uniform distribution, 

and so the results of previous localization length predictions do not apply directly. 

For these we use parameters as before except ihat: 
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3k e’ 
so VB = - 

Figures 5.10.1 -5.10.6 
Parameters: 

~~ 

dn,  =dn2 = .004 
ko= .64 
I,= 1 
vs = .003 

vgr =42 
E = 1 . 6  

W I E = 2 . 0  
y-.I 
<=IO 

aG=1.2 
C = . M  

c,=.004 
Figures 5.11.1-5.11.6 

Parameters: 
ko = .426 
c=.2 

dn = .OS 
n,=35 
lc= 10.7 
vg = .05 

vnt = 1635 
E = 18.5 

W / E  = 1.6 
Y= 
5 =50 

(from Fig. 5.11.2) 

In this case we see that the initial wave packet splits and 

separates at the velocity c,, and seems to be localized by the co- 

moving density fluctuations. Spreading appears to occur due to 

scattering by the oppositely directed wave packet. 

In this set we show the resulting distribution of E in the cases of 

oppositely moving density profiles with: 

Figure 5.1 1.1-5. I 1.2 
c, = 0 (stationary profiles) 
aG = 00 

c, = .005c (c, /v,  = 1/50) 
aG = 8.7 

c, = .Olc (cJ ik  = 1/25) 

Figure 5.11 3 - 5 . 1  I .4 

Figure 5.1 I .5-5. 11.6 

aG = 5.4 

In these cases the wave packet spreads at the speed c,. Most of the wave energy seems to 

remain confined within a space determined by xo f ( 5  + c,r), although we do see indication of some 

additional spread of wave energy, especially in Figure 5.11.6 in the regions x <  185 and .v>415. 

In the following simulations we assume density Aucturitions with widths fc, amplitudes, randoni 

on the interval [ - d n , d n ] ,  and velocities random on the interval [ - c , , c , ] .  In other words, erlch 

density fluctuation has an independent random velocity. 



Figures 5.12a.l-5.12c.l 

Parameters: 
ko= .426 
c=.2  

dn = .02 
nc= 14 
1, = 4.29 
vg = .05 

vgt =480 
E=3.3 

WIE = .92 
y= .06 
< =75 

Figure 5.12a.l-5.12a.2 

Figure 5.12b.l-5.12b.2 
c, = 0 (stationary density fluctuations) 

c, = .Olc (cdr; = 1/25) 
aG = 4.14 

c, = .Olc (cJv, = 112.5) 
Figure 5.12~.  1-5.12c.2 

a G  = .9 

In this case again the spreading of the wave packet seems limited by c,t. 

Figures 5.13a.l-5.13c.3 

Parameters: 
Figure 5.13a. 1-5.13a.6 

koz.854 
c=.12 

dn = .028 In this sequence we show the time development for stationary 

n,=8 density fluctuations. 
I' = 2.35 

v8 = .037 
\'"t = I180 

Figure 5.13 b. 1-5.13 b.3 
As above, but c, = .0025c (c,Iv, = 113333) 

B ~~- 

E =4.7 aG = 6.8 

WIE = 3 9  
y= .03 
< = 8 5  

Figure 5 .13~ .  1-5.13c.3 
As above, but c,= .Olc (c,Iv, = 1131) 
aG = 2.7 Note that the vertical scale is different in 5.13c.l and that 

the localization region is the same as the others. 
Figure 5.13d.1-5.1363. As above, but c,= .05c (c,Ivg = 1/16) ( r ~  = .93 

Figure 5.13e.l-5.13e.3. As above, but c, = . IC (c,Iv, = 1/3) orG = .58 

Again, in this sequence the spreading of the wave packet seems to be limited by c,r, despite 

small values of aG. In order to decrease aG further, it would be necessary to increase c, - vg. At 

this point localization ceases to have any meaning. 

Conclusions 

We have found excellent agreement between the localization length predictions of Escandr 

and Soidlard and the confinement of waves observed in numerical simulations. The interpretation 

of 
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k ,  = d(02 - Gj)/c2 

as the central wave number of the confined wave packet is borne out, and does lead to, the correct 

localization length predictions. 

Strong localization seems to depend weakly on global properties of the medium and snongly 

upon local propertits. By this it is meant that the structures and spectrum of a localized packet is 

largely determined by the properties of the medium where most of the wave energy is confined, and 

the effect of the medium far from this seems only to insure that what little wave energy does reach 

distant points is scattered back. It is this property which seems responsible for the fact that a local- 

ized packet, in the presence of mobile density fluctuations. spreads at the speed c, characteristic of 

the speed of the density fluctuations rather than at, for example, vx. 

We see for example, in the early simulations and in 5.13a.2. that initial spreading occurs at 

the group velocity, despite the existence of density fluctuations up to the point where the wave is 

confined. 

It must be kept in mind that the results shown here for mobile density fluctuations are not 

necessarily valid for higher dimensions, and in particular it might be expected that waves near the 

mobility edge in three-dimensions are delocalized by time dependent density fluctuations. On the 

other hand, the apparent lack of dependence of localization in one dimension on the motion of den- 

sity fluctuations provides hope that things will not be radically different, and the argument is 

further supported by the weak dependence of localization length on dimensionality for strong local- 

ization as discussed in section 4. 
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6. Beam-Plasma Processes in Random Media 

In section 6.1 we develop a theory for the weak-beam plasma instability in rsndom media. In 

section 6.2 the results of numerical simulations of this instability are presented. In section 6.3 we 

develop a theory for the saturation of the instability. 

6.1. Theory of Beam-Plasma Processes in a Turbulent Plasma 

If waves are localized in a turbulent plasma as theory and our simulations suggest, then a 

beam-plasma instability could be expected to excite localized waves with a central wave number 

9 ko= - resonant with the beam particles. 
r'b 

In order to understand how this interaction comes about, we return to the Lagranyian hscus- 

sion of section 3. We shall concern ourselves with the portion of the Lagrangian 

We make the assumption that we can represent the fields in this expression as a sum over 

localized waves whose representation is an exponentially localized wave packet, Le., 

m 

where 

I x - .r, I 
g m ( x , t )  = 4, cos w,r cos km(x - x,) e-Km 

where K, = 115,. 

As seen from the simulation in the previous section, this is only an approximate representa- 

tion; however, it will allow us to make some theoretical predictions, and it should be reasonable for 

waves where the localization length is much greater than the central wave length. 

We can rewrite this as 
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where 

From this we readily obtain the generator for the Lie transform 

J sin [&(Xi - x,) + 0 , t  ] 
kv; + 0, 

+ 

If k ( ’ ) =  e, cp(xl) where the sum is over all beams and plasma particles, then 
I 

sin [k’  (x, - x,,,) - om] 

k‘ vi - 0, 

sin [k’ (x, - s,) + o,t] 
k’ 1’, + 0, 

+ . 

1 cos [ k ”  (XI - x,) - 0 , t l  + cos [k”  (XI - x,) + 0 , t  I 

Evaluating the Lie bracket and taking a time average over the rapid phases emf, o,t 

1 sin k’(x,  - x,) sin k”(x ,  - s,) sin k’(xl - x,) sin k”(xl - x,) 
2 

+ 
( k  ’ VI + 0,y , (k ‘ VI - 0,) 

Next we assume that, in this representation, we may replace the sum over particles by a spa- 

tially uniform average. Using the Vlasov representation: 

The assumption that we make here is that once we have taken into account the effect of den- 

sity fluctuations on the wave propagation which is to localize the waves in the problem, we can use 

average medium properties (such as averages of the dielectric function) to account for wave-wave 

and medium-wave coupling effects. The siniulation results that will be presented in section 6.2 



bear out this assumption. 

This gives 

? I  [ ’ +  ( k ‘ v  + 0,)’ ( k ’ v  - urn)- 
1 

7 

no r- 1 1 
x - j d v g ( v )  ? +  

rn ( k ‘ v  + 0,)- ( k ’ v  - urn)? 

Likewise we can write 

We can then write our Lagrangian as 

where ~ ( k ,  o) is the usual plasma dielectric function for a plasma with uniform density no and 

velocity distribution g ( v ) .  

But then the action is 

S ( 2 )  = j d t  L(’) [F“ ; @,I. 

Varying the action with respect to I$,,,, and setting it  to zero: 

gives 



[ E  (k,, 0 )  + E (-km, a)] = 0 .  

We note that with the beam present, 

E (km, a) * E  (-k, a). 

Following the standard analysis this will give a growing wave mode provided 

For all the cases we are interested in the beam velocity Yb - 10 v,~. The damping from the 

Maxwellian is negligible. Therefore, @,,, should grow at a rate 95 the standard Landau growth rate. 

We therefore expect that in a turbulent plasma those localized modes which are resonant with 

the positive slope portion of the beam will grow with the same growth rate as a plane wave with 

the same central wave number in the homogeneous case. A major difference between the two will 

be that the localized waves will remove much less energy from the beam for any given maximum 

wave amplitude. 

For the sake of completeness, we can also look at single particle motion. If we have the new 

Jp 
3x1 

single particle Hamiltonian K j 2 ) ,  then the guiding center motion of particles is PI = - -. 

4 1 ' -  (k'V, + 0)') ( k ' v ,  - w)-  

1 sink'  (x ,  - x,) sin k" (k ,  - x,) 

This can be evaluated noting that: 

jdk"k"S,(k")sink"y=-n - a [cosk,ye-""'y'] 
3y 

and near resonance for vi, 
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where 

Far from resonance when o,, - I &,,vi I w K,,, I 

This is just the usual ponderomotive potential (Schmidr, 1979, p. 5 1). 

Near a resonance, I on - I knvi I 1 5 K,, 

x [O(x - s,) - O(x, - .r)] 

We note the following points. Everything outside of the braces is dimensionless. K:') - - 1 

Kn 

and therefore is strongly dependent on the localization length. I t  also changes sign with o,, - k,, I,,,, 

i.e., as the particle is faster, or slower than the resonant velocity. We will return to this subject 

when we discuss saturation mechanisms for the beam-turbulent plasma instability in section 6.3. 
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6.2. Simulation of Beam-Plasma Processes 

In this section we show the results of a series of simulations of beam-plasma instabilities. 

The method of simulation and the program are described fully in Appendix A, but briefly is as fol- 

lows: 

The beam is simulated by particles which obey the equations of motion: 

1 l y ( x , t ) = - e  n , ( x , t ) -  n i ( x ,  r )  ( 
with equation of motion 

where oj(x) =4m, ( x , t )  e2/m, is a random variable. 

For the fields: V - E  =4np, where p = -enkun(x , t )+  v(.r,t). 

We plot E and ly as before, except that ly now represents the background charge density per- 

turbations due to plasma oscillations. The plot parameters are as in section 5 with the following 

additions and exceptions. 

v,, = effective electron thermal velocity of background plasma 

n,ln,, = beam density/effective background plasma density 

v,, = beam drift velocity 

vrl = beam thermal velocity 

ko = beam resonant wave number 

3h-(3 vr; 
,7 =-- - group velocity of beam resonant waves in the background plasma 
Y 

kOL 
# of states = - 

21r 
, which represents the expected number of localized states which 

should be excited by the beam. (See the discussion in section 4.2 on density of states.) 
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The initial conditions for all of these simulations are y(s)=O, *(.r)=O, and beam particles 

uniformly distributed in space with average velocity vb and a Maxwellian distribution with thermal 

velocity v?. 

Figures 6.1.1-6.1.3 

Parameters: 
v,, = .07 

This set shows a system without density fluctuations and should 

Vb = 1.5 
vrl=. 15 

n,1n,~=9x10-~ 

be compared with 6.3.1-6.3.6 which has 1% density fluctuations. 

The noteworthy points in this are the smooth variations in the 

ko=.67 
va = .01 

envelope of IY, and the purity of the harmonic content. The envelope 

modulation can be understood as the beating of a nmow spectrum of dn =O 

waves excited by a beam of finite temperature. If we take <Ak = 2z, where < is the characteristic 

length of the modulation and Ak = A m/v z up v,Jvi = ,066. Therefore 5 = 94, consistent with the 0 
characteristic length of the modulation of w. The other noteworthy point is that the energy density 

plot is characteristic of a naveling wave. Furthermore, comparing the.positions of the peaks at 

t = 3,000 and t = 4,800, it is apparent that they have moved a distance v, At = 18 between these two 

times, as one would predict. 

Figures 6.2.1-6.2.15 

6.2.1 shows the distribution of density fluctuations. 

6.2.2 shows the initial beam-particle phase spdce (velocity vs. posi- 

tion). 

6.2.3 shows the initial beam dismbutlon function. 

Parameters: 

v,, = .035 
v b =  1.0 
vrl=.  1 

nb/np,=9x10-6 
dn= .Ol  
n,=4 

1,=.61 
ko= 1.0 

At t =0, =0, and Figures 6.2.4-6.2.15 show the subsequent 

E =.38 
WIE = 2.77 

yr .06 
4 = 8.7 

vs = .0036 
v,t =20 

# states=5 

time development of the beam-plasma instability. 

At t = 200,  y is approximately uniform in space, and the energy 

shows that the wave is a traveling wave. By I = 1200 the localized 

structure is beginning to show. Between times i =3,000 and 
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t = 5,000, the mode structure is reasonably stable and the growth has 

saturated. 

Figures 6.3.1-6.3.6 

Parameters: 
vf, = .07 

vra=. 15 
nb/ npl = 9 x I Oe6 

dn = .01 

n,=8 
l,= 2.34 
E = 2.46 

WIE = 1.5 
y = 6 ~ 1 0 ' ~  
5 =27 

vrt =58 

vb=1.5 

ko=.67 

V8 = .01 

# states= 13 

Figure 6.4.1-6.4.6 
Parameters: 

V I ,  = .l 

Vl2=.12 

n , 1 n ~ , = 9 ~ 1 0 - ~  
dn = .02 
ko= .79 
nc=4 
IC= 1.17 
E = .854 

W I E  = 1.06 

1'6 = 1.26 

y= 2 x  10-2 
5=59 

VB = . o x  
v,t = 112 

# OC modes= 15 

Simulation shows the same initial conditions as in 6.1.1-6.1.3 

except that 1% density fluctuations were introduced. The energy den- 

sity plots are consistent with standing waves. 

Figure 6.5.1-6.5.2 
Parameters: 

VII = .04 

vt2=. 1 
vb=,7 

dn = .01 
nb/np,=9x10-6 

ko= 1.43 
n,=4 
Ic=.6 
E=.77 

WIE = 1.0 
y= 2 x 10-2 
5 =30 

# states= 10 
V g  = .006 

v8t =26 

Figure 6.6.1-6.6.2 
Parameters: 

vfI = .05 

vfa= .OS 
dn = .01 

nbInp =9x1 

nc=4 
1,=.61 
E = .77 

WIE = 1.9 
y z  5 x  

vb=.7 

ko= 1.43 

4 = 12.2 
# states=8 

vr = .0036 
v8t = 13.6 

Figure 6.7.1-6.7.2 
Parameters: 

vfa=.15 
vb=1.5 
vr,=.l 
dn=.Ol 

nblnp=9x10-6 
ko=.66 
n, =1 
1,=.61 
E=.16 

WIE = 2.3 
y z 6 x  
{=IO 

vg = .0067 

# states=? 

v,f = 13.2 

Growth rates and levels at saturation 

The peak energy density (E) versus time is plotted in Figure 6.1 I for the simulation presented 

in Figures 6.2.1-6.2.15, giving an observed growth rate between t =ZOO and t = 1200 as 

yIop= .0015. The growth rate between t = 1200 and 1 = 3500 is y/w, = .0007-1. (Note that the 
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growth rate for E is 2y.) The standard expression for the Landau growth rate of a weak beam is 

Y - p b - -  1 a f b  -- 
op nb 

vu = d k  

(Clim, 1976), and gives for the fastest growing wave resonant with a Maxwellian beam: 

for the fastest growing wave for the parameters of this simulation. We had predicted that the 

observed growth rate for a localized wave should be y/2= .00017. We note that the observed 

growth rate between t = 1200 and t =3500 lies between y12 and y. That the observed growth is 

larger than y12 is to be expected since the growth time l l y -  5/vg and so the resonant wave is only 

partially reflected during the growth time. The very large growth rate for t < 1200 is a result of 

discrete particle effects early on and the “quiet start” beam initialization (Birdsall and Lungdon, 

1985). Resolving these difticulties would require many more particles and a much slower growth 

rate, straining available computer time. 

We can scale the levels of saturation in  our simulation to values for the type I11 solar radio 

burst in rtiks units 3s follows. L a  primed units refer to type XI1 parameters in mks units and 

unprimed quantities to simulation values. Then from the equation of motion ,i = (ylm) E the scal- 

ing is 

We use t i t ’  - a~la,,, iti’ly‘ =electron chargelmass ratio in itiks units and 

_ -  v’ Type 111 beam velocity ( inks ) - 
v Simulation beam velocity ‘ 

Since E = 4rrpIk = ~ l k ;  k = 1; and at saturation (Figure 6.2.12) w = 2 x IO-‘, the saturation field is 

E’=3  mVlm 

which should be compared with the 1 mV/m observed field for the March 11 event. This scaling, i t  

should be noted, is only valid for the case that nhlnpl, \‘),/\‘,hm, and Vh/\’,,,,, are the same for both 
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plasmas. This is not exactly the case, and,funhemore, as discussed in the summary to this section, 

the distribution function for the solar wind is not a Maxwellian. 

6.3. Saturation of the Beam-Plasma Instability 

A fundamental problem in understanding the type I11 solar burst is the mechanism for satura- 

tion of the beam-plasma instability, limiting growth to the observed levels, despite the persistence 

of the observed positive slope at a distance of 1 AU. An extensive study of this problem was done 

using quasi-linear theory (Magelssen, 1976; Magelssen and Smith, 1977). These authors concluded 

that an important effect in the persistence of the beam is that at a given point in space, the beam 

velocity decreases with time. Slower beam electrons later in time reabsorb plasma waves which 

were resonant with the faster electrons that produced them earlier in time. At 1 AU the ISEE-3 

data do not support the quasi-linear relaxation hypothesis, since a strong positive slope is observed 

on the electron hstribution function. 

Papadopolous (1974) has proposed that the oscillating two-stream instability is responsible 

for removing resonant Langmuir waves, thereby limiting the growth rate of the beam-plasma insta- 

bility. Observed wave levels at l AU are below the threshold for this process, however (Lin et al., 

1986). As discussed in section 4.1, Mrrschietti (1985) examined the effect of Langmuir waves 

being scattered out of resonance with the beam electrons by solar wind density fluctuations and 

concluded that the process was “too efficient.” They found that unless special assumptions are 

made about the anisotropy of the density fluctuations the beam plasma instability will be 

suppressed. 

In the Whelm and Sfenzel experiment (1981), the beam was observed to travel the length of 

the experiment with no evidence of quasi-linear relaxation, although Langmuir waves from the 

beam-plasma instability were observed only in the first few centimeters of the experiment. They 

concluded that particle trapping was responsible for saturating the instability. In their simulation of 

this problem, Pritchett and Dawson also concluded that trapping was responsible for saturation of 

the instability. In both cases, however, the beam was relatively cold. 
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Davidson (1972, p. 55 ff.) gives the characteristic rnpping time for a particle resonant with a 

Langmuir wave with electric field E and wave vector k as 

s, E 0;' (m,/ekE)'" . 
for the I1 March event this gives 

T, = .0016 sec . (6.3.1) 

On the other hand, the transit time through a localized wave packet of 70 km extent using vb from 

the 11 March event is t = 5/va = .002 sec. It should be kept in mind that in 6.3.1 we have used the 

peak field. Not only is the average trapping time much larger due to the lower average field, but 

the bounce frequency changes radically on transit through the localized structure. Therefore, parti- 

cle trapping does not occur, and we propose another saturation mechanism in what follows. 

We show the duuibution functions at saturation for two cases. The runs are similar to those 

of mns 6.1 through 6.7, however, we have used a short simulation volume (L = 150 vs. L = 1200) 

in order to increase the phase space density of simulation particles. This results in much smoother 

distribution function. 

Figures 6.8.1-6.8.3 
Parameters: 

\;, =. 15 
\'b =2.2 
vI1=. 15 

nh/ nF = 9~ I 0-6 
dn = .02 
n,=12 

< =30 
k0=.45 . 
I,= 1.8 
E=.65  

W I E = 1 . 5  

y= .06 

Figures 6.9.1-6.9.3 
Parameters: 

= . I3 
\ v h  = 1.8 
vI1=.15 

~ , J ~ ~ = ~ X L O - ~  

dn = .03 
nc= 12 
y= .09 
F - - 3 0  

ko= .55 
l ,= 1.8 
E = 1.0 

WIE = 1.8 

3-'- 

The important result is that in both cases the dutribution function is Hattened in the vicinity of 

the wave-resonant velocity. There appears to be no overall heating or diffusion of the beam, a 

chwacteristic shared with every simulation that we have done. 



The crucial difference between our condition and quasi-linear diffusion is that here the pnrti- 

cles see only one wave at a time. Furthermore, the localized wave, although having a width in k 

space is not well approximated by the random phase approximation, since, in fact, it is a coherent 

structure, the phases are well determined, and first order changes to the particle velocity are enough 

to maintain a certain phase relationship between the wave and a particle. 

Velocity space diffusion of particles by localized wave packets 

In order to investigate the effect of ;L localized wave packet on the distribution function. a sim- 

ple program was run. We followed the orbits of an initial particle distribution governed by the 

equation of motion 

where c is a variable parameter. Eo was chosen so that the napping velocity 

meaning that a particle of velocity \io f .1 would be trapped by the wave if K = 0. The results were 

as follows: 

Figure 6.10.2 the initial distribution function for the nunierical experiment was: 

. 8 I v I 1  
otherwise 

Figure 6.10.2 dismbution function after pllssing through the wave packet for K = . I  

Figure 6.10.3 as above but K = .2 

Figure 6.10.4 as above but K = .4 

It is clear that the particles have diffused in velocity space around the resonant velocity 

\ires = 1.0. The diffusion is significant in the neighborhood of velocity \ I =  1.0 with width approxi- 

mately z f IC. In the case (not shown) where 
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constant .8 I v I 1.2 
otherwise ’ (0 

f ( l ! )  = 

no &stonion of the dismbution after passage through the wave was noted. 

In order to explain this we begin with the Vlasov equation: 

We expand f and H by order in the field: 

Then 6.3.2 becomes 

-- at(’) --If(’), /I(’)] or, 
at 

aft'), -- - If(’), /+I)] 
at 

where the bar indicates time-averaging. 

Using our previous expression for w ,  

sin (kr; + wr) sin (kr, + wr) 
h;. - O 

e40 K + 
IF (k - ko)’ + K 2  ] [ hv, + w 

wi = -- j d k  [ 
we find 

cos ( k ” s  + wt) cos ( k ” x  - Of) + , cos k ‘ x  cos or { 1 k ” v +  w k’’11- o 

(6.3.2) 
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Keeping resonant terms and ignoring ponderomotive effects, this can be evaluated as 

Jf 0 

aV - 

This is the standard form for a diffusion equation. Although we might try to integrate this 

numerically, it is instructive to examine this expression and make some estimates of the drffusion 

m e .  We note first that D ( v )  will be significantly different from zero only in a region 

and 

I <x ,< - 1 - _- 
K K 

agreement with the computational results of plots 6.12.1-6.12.4. 

We attempt to estimate the maximum electric field to which a wave can grow by assuming the 

growth stops when the distribution is flattened in the region resonant with the wave. To flatten the 

original slope of the beam distribution function f we require that At  - 3f - ( v  - v,) -. Jf 
at aV 

1 Noting that the transit time At - -, taking 
Kv 

afo I 
- f o *  -- a\' \',h 

and assuming 

1 <sin k G  sin 1 I > - - 
2 

where the average is over the trajectory of a nearly resonant particle. We obtain 

1 
\' - 2 ( \ 1 - ~ , ) k i  + ~ K ' V  

hS At [ (w - k0v)* + IC? 
froni this we estimate 

E =  m e - v -  k o .  [ l; 7 1  
(6.3.3) 
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As an example we use the I 1  March 1979 parameters. For I - =  . I  c,  IC = 1/7 x 10‘m (20 

wavelengthsfiocalization length), and ko = 2 x lO-’/cm which are values typical of a type 111 burst, 

we obtain E,, 2 . 5  mV/m. This number should not be taken too seriously, but is close to the 

observed - 1 mV/m of the 11 March 79 event. 

Likewise for our simulations (Figures 6.2.1-6.2.15), equation 6.3.3 with kE = y gives us 

m 
e 

y =  -- K~ v2. Using the simulation parameters rnle = 1, K = I/< = U8.7, v = . I ,  we prectict ut satura- 

tion y =  1.3 x which is within a factor of 2 of the values in Figure 6.2.12. 

This theory for resonant diffusion is similar to quasi-linear theory (Davidson, 1972, p. 151, 

ff.), except that we do not make the assumption <Qk Qt+= lQk126kk,, as is usual in weak tur- 

bulence theory, but keep the Fourier representation of the waves in the system and integrate over 

that. 

Summary 

The consequences of wave localization in one dimension as presented in this section are con- 

sistent with satellite observations of the we&-beam plasma instability in the solar wind. Two con- 

siderations have been ignored in this section: 

i) The solar wind is three-dimensional. This is discussed further in the conclusions (section 

8). 

ii) The solar wind plasma has a non-thermal tail (see figure 2.3). Among other things this 

reduces the positive slope of the distribution function reducing the growth rate. The 

growth time I l y ,  in our simulation are 5 the localization times, while growth times in the 

solar wind plasma are -1 sec. 

For the 11 March event vg = 2.4 x IO’ cm/sec. If 4 - 70 km, the localization time - r  = .3 sec. 

So yr = .3. If anything, this should mean that localization is even more evident in the solar wind 

plasma. 
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Simulating the non-thermal tail on the background distribution function is a ver). &l'licult prob- 

leni because of limitations on the number of simulation particles (see Appendix A). The experi- 

ment done by Whelm and Srenrel (1985) suggests that this non-thermal tail may result from a 

strong turbulence mechanism, which would have significant implications for the mechanisms dis- 

cussed here. These mechanisms may be important far upstream in or near the solar corona, but as 

I discussed in section 2, are inconsistent with satellite observations at 1 AU. 



7. Three-Wave Processes 

Although this section is last in  the thesis, the considerations in it were the niotivation for 

studying everything so far presented. In section 7.1 we will review the theory of 3-wave processes 

in homogeneous media, and then in section 7.2 discuss the convective problem as it applies to the 

type III problem. We conclude that wave convection in homogeneous media inhibits the 

L + T +S decay process. We review previous work on 3-wave processes in inhomogeneous 

media. In section 7.3. we develop theory for 3-wave processes when wave localization occurs. 

7.1. Three-Wave Decay Processes 

In the absence of density fluctuations, the second and third order terms in the action can be 

written as 

where the first integral on the right is of second order in the fields and the second is of third order. 

Starting from the expansion (3.3) 

and using 

K‘3)= 1 L’H(’)  + LH(” . 
3 

If we can use the eikonal approximation to express the potentials 

(7.1.1) 

and 
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then, as Kairfman has shown 

e 
where e is the dielectric function for electrostatic waves, D is the electromagnetic dispersion ten- 

sor, and ih is the polarization vector of the electromagnetic wave, b. 

We have made this separation because we shall be concerned with electrostatic and transverse 

electromagnetic waves. As Kaufman has shown, one can use this to find the variable canonically 

conjugate to e,(.t-,t), the phase of the wave in the eikonal approximation localizing &,= Vf3, and 

-&, 
a,= - , one finds 

at  

Likewise 

These expressions will be recognized as the standard action densities with the Hamiltonian 

C ( d  3x dt ma J, . 
a 

We niay also use these variables to re-express the fields in S ( 3 ) .  We will then have 

In Appendix B, we show that 

We define 
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and obtain 

= e, - er - e, 

We will also define 

Yo=P 4z 
The factor of 2 comes from the fact that the growth rate for the action is twice the growth rate for 

the fields, as computed by Sltrikla et al. (1983). 

Going back to the action S(’) + S ( 3 ) ,  and varying with respect to e ( x , f ) ,  we get 

dJ, aJ, 
- = - + v X .  V Ju = -2p 4 J X  sin 0 
d f  at 

(7.1.1) 

We also get: 

dJ From 7.1.1 we can see that - z 0 unless (e, + 8, + 6,) does not vanish when the bar inlcates a 
dt 

time average. This gives us the resonance conditions 

w, - oh - o, = 0 and &, -,kb -5, = 0 (7.1. la) 

If one wave, J,, initially has large amplitude and the other two J b ,  J, have very small ampli- 

tude, then initially we may take J, as almost constant. Furthermore, the relative phase @ will 

quickly evolve so that sin @ 2 1, and so we use sin = 1 in what follows. (For this and a discus- 

sion of the general time development of such a system of equations see Meiss, 1979, and Berg- 

ruann, 1985.) 

We define u, = .& a z =  f i  and obtain 
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If waves 1 and 2 are damped, we can put in the damping heuristically to obtain the WKB equa- 

tions: 

which were first obtained by Rosenbluth (1972). 

(7.1.2~) 

(7.1.25) 

In the cases where the damping is of kinetic origin (ion Landau damping for example), this 

would have come out of the solution of E (k, o) = 0. In the case of the transverse waves, however, 

where the damping is dominated by collisional effects, it is not deriveable from an action principle. 

A brief word about the damping rates of the ion-acoustic and electromagnetic waves is in 

order. For the transverse waves we use the Dawson-Oberman impedance 

(Dowson. 1968). This may actually be as much as a factor of 2 larger due to enhancement from 

ion density perturbations in the solar wind. 

2.5 x IO-” for the 11 March 1979 event. rT 

OP‘ 

-- 

For the ion-acoustic wave, the damping rate as determined by Lin et al. (1986), is 

(7.1.3) 

*/s 2 .I 0 (7.1.4) 

due to Landau damping of the ion-acoustic waves. For the 11 March 79 event TJT, - 5 .  

The damping of ion-acoustic waves leads to a dissipative “localization” in space. The dissi- 

pation length will be 
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7.2. Space-Time Evolution 

If we assume that 0, ( x , t )  = Zl and a 2 ( x , t ) =  Z2 e ~ ’ ~ - O W ,  and substitute these into 

7.1.2b, then (m-iJ~r)l+y,jZl=yoYo2, and ( u - g . q + y 2 ) Z 2 =  yoZl, which can be combined to 

yield the “dispcrson relation” 

(0 - &.l, + 0 1 )  ( w  - K’,V2 + y2) - g = 0 . (7.2.1) 

The spatial and temporal development of a 3-wave system governed by 7.2.1 have been 

thoroughly studied and reviewed by A. Bers (1983) whose analysis we follow in the remainder of 

this section. In order to simplify the analysis, we first transform to a frame moving with velocity 

V such that v I  = vi + V ,  v, = vi  + V, and .w’ E w-K._V, where V is chosen such that v i ,  v i  are 

(anti-) parallel. We will take wave 1 to be the ion-acoustic daughter wave and wave 2 to be the 

transverse electromagnetic daughter wave. The general vector relationship of ,yT and ,vs are shown 

in 7.2.2, along with our choice for V, which will reduce the problem to one-dimension with the 

vector relation shown in 7.2.3. 

4 

In the frame of reference shown in 7.2.3. one obtains the “dispersion relation” 

(m‘  - E= 1.; + yl)(w’ - K t ~ i  + y,) - = O  

If  y1 = y2=0,  this would be ;in absolute instability (positive growth rate for a fixed position in 

space) with the growth rate 

There are, however, two thresholds associated with yI # 0 and y2 f 0: 

1 j 2 > y1 y2 for there to be an instability at all, and (7.2.4) 
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4 I 1’s \‘T I 1) .i> for the instability to be absolute. 
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(7.3.5) 

If (7.2.1) is satisfied, but (7.2.5) is not, then the instability is convective, meaning that at 9 fixed 

point, x, in space (I ( x , t )  + 0 as t + 00, but there is a moving pulse that will grow in time. 

The growth rate of a convective pulse moving with velocity u parallel to vs, and v i  7.2.3 is 

given by 

,, 2[(VT - u )  (vs + u)] ’”  71 (u  + v d  + Y d V T  - u )  

Vs + V r  
0 0  = Yo- (7.2.6) 

For the March 11 case yo= 1.8/s, as was determined by Lin et af. (1986). Using 7.1.3 and 

VT + v, 

7.1.4, > ys yj- so the process is unstable. On the other hand it is the case in this problem that 

‘Z 6 (J  I v; I + ys 11); I )’ 

4 I v; 1’; I 
+ $-=4X10 

4 v; 

Therefore the condtion (7.2.5) is not satisfied by 6 orders of magnitude. When yl + 0, (7.2.6) 

becomes 

,, 2 [(vi - I d )  (vi + u)]”’ Y’ ( 4  - u )  
I ,  yo- , , wg = 

V r  + Vs 5’s + V r  

I t  is easy to show that the fastest growing pulse will be when 

which gives 

The growth length for the 11 March 79 event will be 



73 

This presents a hstinct problem for growth. An ideal, non-turbulent solar wind plasma 

would have a density gradient (due to conservation of the solar wind flux) 

where R is the distance from the sun to the point of interest (1 AU). The eikonal equation for the 

wave vector i of a wave propagating in media with inhomogeneities with a scale length much 

longer than the wavelength of the wave is: 

(7.2.7) 

where 1’ is the group velocity of the wave (Landau and Lifshitz, vol. 6 ,  para. 66). Since kL is 

approximately parallel to the density gradient in the solar wind, vT will be transverse to it. The 

1 dominant term in 7.2.7 is therefore - Vv, and we find that 
V 

In one growth length the wave will be displaced a distance along the density gradient given by 

The resonance condition for growth is such that growth will cease when vK Ak = yo. But 

and so the transverse wave will be refracted out of the resonance region within oen growth length. 

The consequence of this is th:it because of the low level of the Langmuir pump and the high danip- 

ing rate of the ion-acoustic daughter wave, the instability is convective instead of absolute. but 

because of refractive effects the convective instability is suppressed. 

By contrxt, wc apply thc same considerations to the Wlielan and Stenzel (1985) experiment. 

Using their results we estimate 

y,, z 3 x IOX/sec2, 2 2 I x lO‘-l/sec’ 

vT = 3.5 x lo9 cmlscc and 



\sS = 2.6 x 10' cn~/sec 

VT We see that $ w -, and therefore in this case the absolute threshold is greatly exceeded. 
4vs 

If the discussion in this section has so far cast doube that a 3-wave process is involved, the 

following argument gives strong support for it. If we write down eq. 7.1.1 for each wave in the 

type I11 process, assuming no wave damping, we get 

Adding the first two gives us 

d 
dt 
- (JL + J s )  = 0 (7.2.8) 

This is one of the Manley-Rowe relations (Sagdees and Galee\: 1969). Again ignoring damping 

and convective effects, we would expect from eq. 7.2.8 that at saturation of the 3-wave decay 

JL z Js .  Using the standard expression for .cS (k ,  o) and eL (k ,  o) gives us 

when we substitute parameters for the 11 March 1979 event. Bergman (1985) did an extensive 

numerical study of the time evolution 3-wave systems when one of the daughters is damped and 

found that the damped daughter wave and pump wave will oscillate in amplitude 180" out of phase 

with each other, between zero and nearly equal maximum amplitude, which, however, decay with 

the damping rate of the damped daughter wave. Actually, this argument ignores another effect 

which is that the electron beam will replenish the Langmuir pump wave as the latter is depleted by 

the 3-wave decay. 

Because all other factors seem to support the 3-wave process we next examine how density 

turbulence modifies the convective process and what effect this modification would have. We begin 

with a review of the considerable effort that has been made to understand the effect of spatial 
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plasma inhomogeneities on parametric instabilities, much of which has been duected towards 

understanding laser-induced plasma instabilities for laser fusion applications. 

The usual approach to this problem begins with the following equations for the slowly evolv- 

ing amplitudes 

where K = L I Z ,  (Rosenblutti, 1972; Nishikuwa, 1968). For a linear density profile such that 
I 

K ( s )  - K' . (s -so) .  Rosenblritlz concluded that for v1 v2<0, when both waves propagate along the 

density gradient, the gradient leads to convective growth of the instability. DuBois et ai. (1974) 

showed, however, that this effect was due to the unphysical assumption of an infinite length plasma 

with constant density gradient, and finite lengths lead to temporal growth for normid modes of the 

system. 

Klein et ul. (1973) considered the case of the Raman side-scatter instability, the geometry of 

which is similar to the type III problem. A laser pump propagating along the density gradient 

decays into a Langmuir wave propagating approximately along the density gradient and another 

electromagnetic wave propagating transverse to the density gradient. The authors did a 2-D nurner- 

ical simulation and discovered that this instability is not stabilized by a strong density gradent as is 

the Raman backscitter instability. This was attributed to the side-scattered wave remaining in the 

resonance region until refracted out, allowing for a much longer growth length. 

Further theoretical progress on the Raman backscatter instability was made by Drake et ai. 

(1973), after Forsliind et ai. (1973) discovered through computer simulation that a teniporally 

growing mode (absolute instability) existed in the Raman backscatter problem. Drake et 01, 

pointed out that the beating of the pump and the backscattered wave caused a bunching of electrons 

which would partially reflect the backscattcrcd wave back into the region of the instability. Tcm- 

poral growth became possible for waves which were quantized by the well formed between the two 
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turning points. 

M .  Mosrrom (1975) considered this effect for the Raman side-scatter problem using WKB 

techniques. The conclusion was that the reflection due to the inhomogeneities produced by the 

beating of the pump and side-scattered wave could balance the effect of refraction, thereby allowing 

for absolute rather than convective growth. 

The first study of the effect of random inhomogeneities on panmemc instabilities was done 

by Tamoikin and Fainshtein (1972). The effect of random inhomogeneities considered in this study 

is to cause the phases of the three waves to fluctuate randomly, and to be scattered. The major 

effect is shown to be an exponential damping of the pump wave, due to scattering by the inhomo- 

geneities. This depletion of the pump damps the parametric decay. 

Nicholson and Kunfman (1974) studied the effect of random density fluctuations superim- 

posed on a linear density profile. The suppression of a temporally growing mode, as discussed by 

Rosenbliitli (1972) and mentioned above, was due to phase cancellations which, as Nicholson and 

Kairfman showed, is destroyed by random fluctuations. They therefore showed that a temporally 

growing mode can occur. Nicholson (1976) also studied the effect of a sinusoidal density modula- 

tion on parametric decays. The eEect of this density modulation was discovered to suppress 

growth rates, but a large density modulation was required to provide substantial suppression. 

The effect of random wave phase caused by time varying random density fluctuations was 

studied by Lava1 et al. (1976) using the Bouret approximation, who concluded that the effect was to 

suppress growth. 

In summary, the major effects that have been considered are the effects of inhomogeneity in 

the phase relationship between the waves. Only in the studies of Drake and Mostrom has the effect 

of reflection and partial trapping by inhomogeneities been considered, yet for the cases s tu led  the 

daughter waves propagate near the critical density where even small inhomogeneities will have 

major effects. 

For long wavelength large amplitude density fluctuations, on the other hand, waves near criti- 

cal density will be completely trapped. Although such a napped region will be very irregular in 
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shape, leading to chaotic ray trajectories, a large body of work has been done which shows that in  

such cases. waves will in fact be quantized. This was studied by McDonafd (1983). There is also 

a large body of work in quantum chemistry studying the quantization of classically chaotic systems 

(see Cusari, 1983, and references therein). 

The effect of wave-trapping on a parametric instability is two-fold. The first is that since 

there is no wave convection, the instability will be temporally growing rather than spatially grow- 

ing. The second is that the trapped wave will be quantized. The discrete spectrum for k and o 

will limit the possible waves in the instability and may slow or inhibit the growth due to phase 

mismatchcs. The effect of smaller amplitude shorter scale length fluctuations is not so easily 

treated in this scheme, and for t h s  situation we return to localization effects. 

7.3. Localization and Three-Wave Processes 

We are nearly at the end of the story. The effect of wave localization on the 3-wave process 

is to prevent wave convection out of the region of interaction non-dissipatively, Localization of the 

Langmuir waves is unnecessary for this, but as we saw in section 7.2, prevention of convection of 

the winsverse wave is necessary. In order to make theoretical progress we assume, again, that once 

localization effects on wave propagation are included, we can use averaged plasma properties to 

compute coupling constants. We assume therefore that the Langmuir and transverse waves are 

exponentially localized so that we may use a modified eikonal representation of the waves as fol- 

lows: 

+ cc 
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where 

no e3 
P =  

mJkTM a$o, 

as determined in Appendix B. Again 

kL 
sin a ( x )  = - 

1 kL I 

where in this case it may be a function of position. Take variations 

(7.3.1 cj 

If we define the total wave action 

where we have assumed that J d 3 x  = - , and therefore that the localization is isotropic. 
IC3 

Then 

and 
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Since the ion-acoustic wave convects and is damped, we must retain the action density 

I .  

If we integrate 7.3.1~-c 

As before, we consider the case where at t =0, EL is large and E,, E, are at fluctuation levels, so 

that initially we can take EL a constant. Then we use the definition 

With this definition yo will be of the same form as in section 7.1 where EL is now the peak value 

of the electric field. Again we have 

and 
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Combining these gives 

Although we could attempt to integrate this numerically over assumed forms for the localized 

waves, we can make some estimates as follows. 

Experimentally, it appears that the envelope of the ion-acoustic wave is similar to that of the 

Langmuir wave. Furthermore we assume 

sin a(x) - 1 and cos @(x)  - 1 . 

Therefore, we assume we can write 

- I r L  I .r - r L  I - 
Js(X)=  K L J s ( f )  e 

We malie the WKB assumption 

Then 

which gives us the requirement for positive growth that 

For the 1 I hluch event 

ys .1 1 1 -- " 2 . 5 ~  IO-"; - - K L - ~ '  3 KT-------* 
*S 500 km ' ope 

( 7 . 3 . 2 )  
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The instability requirement (7.3.2) is $ > 9  x lO-‘/sec’. The actual value of 

$ z (1.8Isec)’ = 3.Wsec’ and we see that the instability threshold is exceeded by more than 3 ord- 

ers of magnitude. The effects of phase decorrelations, etc., might be estimated at 1 to 2 orders of 

magnitude. 

The following considerations are of possible significance: 

i) Because the Langmuir localization length is much less than a transverse wavelength, wave 

number matching is not significant. We should merely have ks i kL. On the other hand, fre- 

quency matching is signficant. It is necessary that the frequency mismatch be less than the 

growth rate yo. The frequency matching will be determined by the frequency levels of local- 

ized states. 

Other than assuming that ,kT is perpendicular to ,kL, we have not really considered the effects 

of the 3-dimensionality of the problem. Although a one-dimensional model may be adequate 

for the Langmuir waves, the transverse wave is .certainly a 3-dimensional problem, and the 

ii) 

localization length predictions from tlie 1-dimensional theory are certainly shorter than in real- 

ity. Furthermore, the electromagnetic wave is a vector wave and consideration of the effects 

of scattering on the wave polarization is important. 



82 

8. Concluding Remarks 

We have argued that wave localization effects can be important whenever a wave propagates 

near the wave cut-off in a plasma with superimposed density turbulence. The effect of localization 

will be to stop propagation and limit wave spreading to a velocity approximately that of the density 

fluctuations. Furthermore, the confinement of the wave and possible daughter waves can change 

the nature and threshold of plasma instabilities. 

We have discussed beam-plasma interactions at length because this problem is easily treated 

by one-dimensional simulations. The localization of Langmuir waves in itself would seem to be a 

curiosity with little importance other than proving that density fluctuations do not suppress the 

beam-plasma instability. On the other hand the localization of the transverse waves allows an ins- 

tability to reach threshold which otherwise would not occur. 

We have only simulated those parts of the problem amenable to a one-dimensional treatment. 

To treat the full problem, includmg 3-wave decay and non-linear effect in even two dimensions, by 

computer simulation would be very difficult. Because effects happen on both electron and ion time 

scalcs. a two component model of the background fluid would be needed, this leads unfortunately 

to charge separation and noise for warm fluids. A large number of grid points would be needed 

since the system needs to be luge enough to include several electromagnetic wave wavelengths. 

When beam panicles are included one obtains a memory requirement of -3x  IO6 words. This 

would be prohibitively expensive in Cmy time. 

Although the existence of wave localization in 3-dimensions is well established theoretically 

for fixed scatterers, the problem of mobile scatterers in 3-dimensions is not settled. This problem 

is amenable to study using an extension of the methods used in Chapter 5 on, say, a 

100 x 100 x 100 lattice. In this case, only waves localized to a small number of lattice points could 

be studied. 

Within the context of the type 111 problem, the arguments we present are consistent with 

observations at I AU. We make no claim as to their importance or validity in other regions, in the 



83 

solar corona, for example, where strong turbulence effects may in fact be important. On the other 

hand it seems improbable that if  the solar wind is turbulent at 1 AU that is is not also turbulent in 

other and perhaps all regions closer to the sun. In this case, localization will still occur for small 

amplitude waves. For waves of large amplitude, strong turbulence effects including soliton forma- 

tion and collapse are probably of more importance, although wave localization may cause a faster 

onset of these processes. 

A final word for those who would argue that wave localization is unnecessary for understand- 

ing the behavior of the Langmuir waves. To a certain extent, we would agree. As the scale length, 

L ,  'of the shortest wavelength density fluctuations increases to the point that L B A,-, semi-classical 

or WKB techniques become valid. As McDonald (1983) showed, the closed, quantized trajectories 

are of special significance. Since we are ultimately concerned with wave behavior, however, we 

argue that one cannot just use ray trajectories and ignore quantization effects. This is the import of 

the work by Bezerides (1986), discussed in the introduction. Even if, because of particular aniso- 

tropies in the turbulence, most trajectories are not trapped, some will be, and when closed and 

quantized, lead to long-lived quasi-stationary states. Once the Langmuir waves are confined and 

quantized, whether through localization or semi-classical effects, much of the discussion of Chapter 

6 holds. Because of the length scales involved, the properties of the transverse waves can only be 

understood through the properties of the full wave equation in random media, Le., localization 

theory, since dispersive effects are as important as refractive effects. The advantage of using local- 

ization theory, on the other hand, is that one can be very ignorant about the turbulence involved 

and still make very powerful statements about the consequences. 
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Appendix A. Simulation Techniques and Code Listing 

The simulation codes developed for this study are based on standard plasma simulation tech- 

niques as discussed in Birdsall and Langdon (1985), which is the reference for the numerical tech- 

niques discussed below, and some of the code is taken directly from the program ES1 by Bruce 

Lansdon. 

For the localization studies we have used two programs, BEAMLOC, and PERLOC. BEAM- 

LOC is used for the beam-plasma interaction, and is listed following this discussion. PERLOC was 

used for the Gaussian wave packet propagation, and is similar to BEAMLOC except that the 

unnecessary particle mover and field solver were eliminated, resulting in a very much faster run- 

ning program. 
~ 

In the remainder of this section we discuss BEAMLOC; however, the discussion of PERLOC, 

suitably restricted, would be the same. 

Our techniques for simulating the background plasma is to use a linearized one-fluid plasma. 

Our ntionale for this is the following. 

I In this problem we wish to simulate the effect of a very weak beam with physical density 

n b  -- 
“IJSrnl 

If we tried to use particles, in order to observe the fields that arrive from the beam 

plasma interaction, we would certainly expect that the statistical fluctuations in the background den- 

sity would be significantly less than the beam density. . 

Let np = number of background simulation particles in the box Ax; nb = number of beam 

simulation particles. The charge of a simulation particle is 

? 

e =  
4 n ( e l m ) n p  

( e l m )  is established by the particle type. 

If we require that the fluctuations in the background particles produce fields signhcantly less 

than those arising from the beani-plasma interaction, then 
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,!? =fluctuating electric field 

ii = fluctuating density 

We require 

We get 

4 1 Are- -  
( e l m )  rip ( e l m )  k 
fa; .Jii, 

or 

L J  

It is quite impossible to use particles for the background in this case. 

A further problem, which also restricts the ability to use a two-component fluid €or the back- 

ground is th;it since we have significant density gradients because of our fluctuating background 

fields, we will get strong electric fields due to charge separation unless we have A x a A D .  How- 

ever, for our problems we want to follow several hundred wavelengths and want 100 Drbye lengths 

per wavelength. In order to siitisfy all of this, we should then require 2 lo6 grid points. 

By using the equation of motion 

for the turbulent background plasma we gain in simulation quietness and isolation of the eifect we 

are interested in (the effect of density fluctuation on wave propagation). On the other hand, we 
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conipletely eliminate any effects which are non-linear in the background plasma. This could be 

significant since the density fluctuations are large. 

SPERLOC uses the following equations. We assume a grid with nR + 1 grid points, equally 

L 
nR 

spaced over a length L giving Ax= -. Quantities defined on the grid are advanced by time steps 

At.  

The equations of motion we solve are: 

Particles: 

Fluid: 

Define y ( . r , f )  = -3 [n=(x , t )  - ni(x , t ) ]  

Field: 

V . E = 4np where p = -enbcm, + y 

Initial conditions: 

aw - (x ,O) = 0 
af 

where 6 r i ( x )  is a randomly distributed variable 

.r l ( f  =0) is uniformly distributed in space 

\ - , ( f  =0) = drifting maxwellinn distribution 
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We use a time centered leap-frog scheme to solve these equations. We define the quantities: 

At 
Ax 

\$'+Ih = - 13 ( t  = (n + %)At)  the velocity for the j th  particle 

x:= x,( t  = nAt )  the position of the j t h  particle 

y,"=ly(x= j A x ; l = n A f )  

u;, = u; (x  = i Ax)  

We first solve for the electric fields in Fourier space from the following. 

P1= Y;" + Pla, 

A .  E: = 4~p,!'  

and then advance quantities in time: 

y,!'+l= y,? + y;"+% 

.y!'+' = ,y:+ \r,!'+%Af 

We then find p:+', then E,"+' and so on. The advantages of a time centered leap-frog scheme to 

solve differential equations which are 2nd order in time is that the solutions are of accuracy 0 (Af'). 

Plots: 

In addition to plotting the quantities y," and +,nn-% we are also interested in the "energy den- 

sity," which we define as 

This is the Hamiltonian density which will generate the equations of motion for y and W .  Plotting 

this has the advantage that the quantity is phase independent, unlike y and q. 
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The peak occurs for kl,  = .55 - x 1 0 0 ~  I 512 

Model for background density fluctuations 

In most cases the model we use for density fluctuations is that of Escande and Souzllard, 

= 1.227 and decreases approximately as k-2 up 

which is that o j ( x )  is a step function, constant on a specified number of gridpoints, n,, which is 4, 

8, or 16 in most of the simulations presented. The value at each step is generated by a random 

number generator and is uniform on the interval. 

[ ‘ - S o p m , ,  2 l+Sw;-] .  

We show the power specuum of density fluctuations in this model in Figure B.2. In this 

figure I = 3 13, ng = 5 12. According to this, 

This gives 

I 6nk 

For moderate k ,  the sum vanishes unless j = j’ and so 

As k + 0 however, 

L 1 

to kl, = 2 ~ .  The detailed structure, however, is of course a specific manifestation of the statistics of 

the ensemble, since the sample is finite, and it is this that gives rise to the localization. 

Notes on units: 

We use the following convention for units in this program. We choose units of time so that 

the background plasma frequency up,, = 1. We choose units of mass so that e / m  = 1. Once we 

speciw the number of simulation particles nkam in a box of length Ax, we have set the charge of a 
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beam pxrticle 

Typically we take 

As it is, we find that 4,096 grid points is the largest number necessary, and 8,192 particles 

gives us two simulation particles per grid point. 

" I  
A typical length of the system is L - 314, and v, - .05. With up = 1, AD = - = .05. With 

O P  

nE =4,096 the number of gridpoints, we have AdaD = 1.5. As none of the physics of our simula- 

tion relies on being able to resolve a Debye length this is sufficient. Also a typical beam velocity 

will be vh = 1.0. Then 

therefore a typical wavelength is very well resolved. 

The typical CRAY run time for BEAMLOC with ng =4,096, nknm = 8.192, n, =4,000 was 10 

minutes. The typical run time for PERLOC with ng =4,096, n, = 80,000 was 4 minutes. 
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Appendix B. Computation of the 3-Wave Coupling Constant 

In this appenlx we calculate the 3-wave coupling constant between a Langmuir wave, an 

ion-acoustic wave and a transverse electromagnetic wave, used in Chapter 7. We begin with 

eq. 7.1.1, 

(B.1) 
K(3)= - L 2 H ( 1 ) + L H ( 2 )  I 

3 

In this particular case we note that LH(’) will contain no term of the form ei(eL-%-es) since 

H(’) - I - AI and the only wave with non-vanishing ,A in our choice of gauge is the transverse wave. 

Let us write 

ei i%(x . r )  H:’)= - pi  - i r ( x , t )  e 
i m,c 

where a is a wave index and HL’)=[H(’ ) ]*  (complex conjugate), and where we have defined the 

“non-relativis tic’ ’ 4-vectors 

A = (O, ,AT)  for the transverse wave 

A = (&, 0) for the ion-acoustic or Langmuir waves 

and pi = (rnic, m i z i ) .  

where 8, = kui;. - a,. Eq. B. 1 becomes 

If we use the Vlasov approximation 

I 

then 
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Integration by puts gives 

1 = - j d 3 s d 3 p  no 
3 a  

If g ( p )  is a Maxwellian distribution, then 

= -fL g ( P )  
a p  mkT 

and we find 

I no aw s(3)= 7 1 d ’ ~ d t  d 3 p  g ( p )  - p  - ( w ,  HA’)) 
u mkT ax 

We take 

Ha 
w = c  - 

a 

which gives 

Combining the above gives 

NOW, we note that for vb w vTe, 

and we assume that we may use os - ksv - -ks . v when integrated over the thermal distribution. 

We write K { L 3 r l  to represent the sum over all permutations of a& where one of the waves is 

a Langmuir wave, one ion-acoustic, and one transverse. 
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Since ,kL =is and e,  3 4, > is, the underlined terms are approximately equal and are dominant, 

1 cancelling the -. If we define 3 

then 

We evaluate the quantity p defined as 

p 5 ('1 -s ina kS 

kT mc OL 

as follows: 

Noting that 

and using the definitions 
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where we have used the standard expression for the dielecmc response functions eL and E ~ .  Then 

we find 

The factor 

is the same as that derived by Shrikla and Yu (1983) using fluid equations. We can also write P in 

the form 
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Plasma, Beam, and  Wave Parameters 
. for 11 March 1979. (from Lin et. 

al., 1986) 

Solar wind plaama 

Solar wind density, n 

Solar wind velocity, V,, 

Angle of magnetic field 

2 cm3 

480 km/s 

to  solar wind, BB 139' 

Electron temperature, T, 2 x io5 IC 

Ion temperature, Ti 

Debye length, XD 

Electron plasma frequency, jp- 

Ion plasma frequency, f, + 

4 x 10' K 

2.2 x io3 cm 

13 lrHz 
3 X lo2 Hz 

Fast electrons 

Beam velocity, trb 

Beam density, nb - 7 ~ 1 0 ~  cm-3 

Positive slope, a f / a v  11 -10-25 cm-3 s2 

Beam width, Avb /vb N O .  1-0 .? 

-3.5 x 10' cm/s 

Langmuir pump waves 

Beam resonant wave number, k 0 

Maximum wave amplitude, E,-,, 

2.3X lod cm-' 

-1 mV/m 

Maximum normalized energy 

density, W,, = E 2 /87rn K T, 8 x lo-' 

Long waveiength ion acoustic waves 

Wave number, k, (typical) 

Ion acoustic speed, c ,  

Ion acoustic frequency, f l  

Maximum electric field, E,, 

1.8X 10" cm-' 

5.2 x 10'' cm/s 

15 Hz 
-40 gV/m 

Table 2.1 
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Figure 2.1 Electron flux and 
electric field measurements 
(from Lin et. al., 1986) 



Figure 2.2 Reduced parallel electron 
distribution function.(from Lin et. al., 
1986) 
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